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Preface

The continuous international efforts to enable everyday devices to partici-
pate in the emerging Internet of Things (IoT) ecosystem has led to an explosive
increase in the number of smart devices that surround us. However, our capacity
as humans to meaningfully process, manage, control, and interact with them is
limited by human nature, our interests and our technical fluency. The coming
new digital market envisions an ambient environment where the physical world,
computer-based systems and humans converge and seamlessly interoperate, re-
sulting in an improved social and economic marketplace.

Collectively, the public sector, industry, academia, end-users, SMEs, and
large corporations constantly feed the, already, high expectations of IoT. Artifi-
cial Intelligence (AI) has the capacity to facilitate the anticipated socio-economic
transformation caused by the proliferation of IoT through innovative algorithms
and techniques.

The Artificial Intelligence and Internet of Things (AI-IoT) series of work-
shops aims at providing the ground for disseminating new and interesting ideas
on how AI can make valuable contribution in solving problems that the IoT
ecosystem faces. The virtualization of devices and smart systems, the discover-
ability and composition of services, the interoperability of services, the distribu-
tion of resources, the management and event recognition of big stream data, and
the development of algorithms for edge and predictive analytics are only a few
of the problems that look for intelligent human-centric solutions that could find
application in smart cities, smart farming, transportation, health, smart grid,
tourism, etc.

The second installment of the workshop – 2nd AI-IoT 2016 – was co-located
with ECAI 2016 in The Hague, Netherlands and featured a keynote by Prof. Dirk
Helbing from ETH Zurich, Switzerland, entitled “Towards Smarter Societies”
and five accepted papers, resulting in an intriguing technical program. Papers
accepted in the workshop gave special emphasis in AI-related topics such as:

– Machine learning
– AI planning
– Reasoning under uncertainty
– Personalization
– Classification
– Real-time event recognition
– Multi-agent systems

that have been explored in smart societies, tele-assistance, smart tourism, em-
bedded sensor fusion, for activity recognition in surveillance and security sys-
tems, and for detecting treads and abnormal activities in maritime surveillance.

Specifically in this proceedings the contributions of the accepted papers are as
follows. In the “Third Generation Teleassistance: Intelligent Monitoring Makes
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the Difference”, Rafael-Palou et al. propose an intelligent monitoring solution
for elderly people, integrated in an IoT-based tele-assistance system, demon-
strating how it contributes in offering enhanced support to both end-users and
caregivers. Machine learning methods based on SVM are used for detecting in-
teresting events and issuing alarms in case of an emergency. Results from deploy-
ing the system in real-life situations are presented. Marzal et al. in “Temporal
Goal Reasoning for Predictive Performance of a Tourist Application”, discuss
a goal reasoning framework that identifies if the context information acquired
from several external resources dictates a change in the execution of a temporal
plan. TempLM, a temporal planner that uses temporal landmarks for planning
with temporal deadlines, detects situations of future failures and opportunities
in the plan execution. The capability of the planner to adapt to external events
is showcased in a smart tourism scenario. Babli et al. in their paper entitled
“An Intelligent System for Smart Tourism Simulation in a Dynamic Environ-
ment” present an AI planning-based system for the smart tourism domain, where
the goal is to construct a personalized tourist agenda of places a tourist could
visit according to his preferences. The system not only creates the agenda, but
also monitors its execution in real-time through simulation. Emphasis is given
in dynamically reacting to changes in the environment by adapting, if neces-
sary, the tourist agenda, through reformulation of the planning problem, to re-
flect the new state of the environment in real-time. In “Extending Naive Bayes
with Precision-tunable Feature Variables for Resource-efficient Sensor Fusion”,
Galindez Olascoaga et al. focus on the tradeoff between resource efficiency and
inference accuracy, by tuning feature quality in sensing devices. An extension to
the naive Bayes classifier is implemented and evaluated in sensor fusion tasks.
The algorithm is capable of dynamically tuning feature precision as a function
of the incoming data quality, the difficulty of the task and the resource avail-
ability. In the last paper, “A Distributed Event Calculus for Event Recognition”,
Mavrommatis et al. present a distributed approach for stream reasoning, called
dRTEC, based on a dialect of event calculus. dRTEC employs the Apache Spark
framework to perform scalable event recognition and detect significant patterns.

The organizers would like to thank the authors for submitting their work
to the workshop, the members of the program committee for their valuable
contribution in reviewing the papers and, of course, the numerous participants
of the workshop.

Constantine D. Spyropoulos
Georgios Pierris

Grigorios Tzortzis

Organizers of 2nd AI-IoT 2016

Workshop site: http://2nd-ai-iot2016.iit.demokritos.gr/
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Keynote

Speaker: Prof. Dirk Helbing, ETH Zurich, Switzerland

Title: Towards Smarter Societies

Abstract – As the recent triumph of alphaGo has shown, the exponential in-
crease in computer power allows us now to solve challenging problems that
seemed to be out of reach for a long time. So, would we eventually be able
to build superintelligent computers that would be able to solve humanities’ 21st
century problems and run our society in an optimal way? Surprisingly, the an-
swer is “no”, because data volumes increase faster than processing power, and
systemic complexity even faster. This has a number of implications: local knowl-
edge, context as well as distributed computing and control will become more
important. Science will be relevant again to decide what data to process and
how, and how to collect the right kind of data in the first place. This talk will
elaborate on a number of pitfalls in the areas of Data Science and AI, and it will
make proposals how to use these technologies and the Internet of Things more
successfully, with context-aware approaches.
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Third Generation Teleassistance:
Intelligent Monitoring Makes the Difference

Xavier Rafael-Palou1 and Carme Zambrana1 and Stefan Dauwalder1 and
Enrique de la Vega2 and Eloisa Vargiu1 and Felip Miralles1

Abstract. Elderly people aim to preserve their independence and
autonomy at their own home as long as possible. However, as they
get old the risks of disease and injuries increase making critical to
assist and provide them the right care whenever needed. Unfortu-
nately, neither relatives, private institutions nor public care services
are viable long-term solutions due to the large amount of required
time and cost. Thus, smart teleassistance solutions must be investi-
gated. In particular, IoT paradigm helps in designing third generation
teleassistance systems by relying on sensors to gather the more data
as possible. Moreover, we claim that providing IoT solutions of in-
telligent monitoring improves the overall efficacy. In this paper, we
presents an intelligent monitoring solution, fully integrated in a IoT-
based teleassistance system, showing how it helps in giving better
support to both end-users and carers. Thanks to intelligent monitor-
ing, carers can instantly access to the relevant information regard-
ing the status of the end-user, also receiving alarms in case of any
anomaly or emergency situations have been detected.

1 Introduction

In the last decade, the Internet of Things (IoT) paradigm rapidly grew
up gaining ground in the scenario of modern wireless telecommu-
nications [6]. Its basic idea is the pervasive presence of a variety of
things or objects (e.g, tags, sensors, actuators, smartphones, everyday
objects) that are able to interact with each other and cooperate with
their neighbors to reach common goals. IoT solutions have been in-
vestigated and proposed in several fields [7], such as automotive [17],
logistics [19], agriculture [31], entertainment [18], and independent
living [12].

Several research issues are still open: standardization, networking,
security, and privacy [27]. We claim that research might also focus
on intelligent techniques to improve IoT solutions thus making the
difference with respect to classical systems. In other words, artificial
intelligence algorithms and methods may be integrated in IoT sys-
tems: to allow better coordination and communication among sen-
sors, through adopting multi-agent systems [1]; to adapt the sensor
network according to the context, by relying, for instance, on deep
learning techniques [16]; as well as to provide recommendations to
the final users, by using data fusion and semantic interpretation [4].

Considering the dependency care sector as a case study, in this
paper we show how intelligent monitoring techniques, integrated in

1 eHealth Unit, EURECAT, Barcelona, email: {xavier.rafael,
carme.zambrana, stefan.dauwalder, eloisa.vargiu, fe-
lip.miralles}@eurecat.org

2 Technology Transfer Unit, EURECAT, Barcelona, email: en-
rique.delavega@eurecat.org

a IoT-based teleassistance system (namely, eKauri3), help in pro-
viding better assistance and support to people that need assistance.
eKauri is a teleassistance system composed of a set of wireless sen-
sors connected to a gateway (based on Raspberry-pi) that collects
and securely redirects them to the cloud. It is worth noting that
eKuari is composed by the following kinds of sensors: one presence-
illumination-temperature sensors (i.e., TSP01 Z-Wave PIR) for each
room, and one presence-door-illumination-temperature sensor (i.e.,
TSM02 Z-Wave PIR) for each entry door. Intelligent monitoring in
eKauri allows to detect the following events: leaving home; going
back to home; receiving a visit; remaining alone after a visit; go-
ing to the bathroom; going to sleep; and awaking from sleep. In this
paper, we focus on the contribution of the intelligent monitoring in
eKauri, the interested reader may refer to [23] for a deep description
of the system.

The rest of the paper is organized as follows. In Section 2, we
briefly recall IoT solutions to teleassistance. Section 3 illustrates how
intelligent monitoring improves teleassistance in the eKauri system.
In Section 4, the main installations of eKauri are presented together
with users’ experience. Section 5 ends the paper summarizing the
main conclusions.

2 Related Work
Teleassistance remotely, automatically and passively monitors
changes in people’s condition or lifestyle, with the final goal of man-
aging the risks of independent living [9] [2]. In other words, thanks
to teleassistance, end-users are connected with therapists and care-
givers as well as relatives and family, allowing people with special
needs to be independent.

There are several of efforts to utilize IoT-based systems for mon-
itoring elderly people, most of which target only certain aspects of
elderly requirements from a limited viewpoint. Gokalp and Clarke
reviewed monitoring activities of daily living of elderly people com-
paring characteristics, outcomes, and limitations of 25 studies [15].
They found that adopted sensors are mainly environmental, except
for accelerometers and some physiological sensors. Ambient sensors
could not differentiate the subject from visitors, as opposed to wear-
able sensors [8] [5]. On the other hand, the latter could only distin-
guish simple activities, such as walking, running, resting, falling, or
inactivity [3]. Moreover, wearable sensors are not suitable for cogni-
tively impaired elderly people due to the fact that they are likely to
be forgotten or thrown away [11] [14]. Their main conclusion regard-
ing sensors is that daily living activity monitoring requires use of a
combination of ambient sensors, such as motion and door sensors.
3 www.ekauri.com
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3 Intelligent Monitoring Makes the Difference

Filtering and analyzing data coming from teleassistance systems is
becoming more and more relevant. In fact, a lot of data are continu-
ously gathered and sent through the sensors. The role of therapists,
caregivers, social workers, as well as relatives (hereinafter, carers) is
essential for remotely assisting monitored users. On the one hand,
the monitored user (e.g., elderly or disabled people) needs to be kept
informed about emergencies as soon as they happen and s/he has to
be in contact with therapists and caregivers to change habits and/or
to perform some therapy. On the other hand, monitoring systems are
very important from the perspective of carers. In fact, those systems
allow them to become aware of user context by acquiring heteroge-
neous data coming from sensors and other sources. Thus, intelligent
solutions able to understand all those data and process them to keep
carers aware about their assisted persons are needed, providing also
users empowerment.

In the following, we show how intelligent monitoring helps in: im-
proving sensors reliability allowing better activity recognition; pro-
viding useful information to carers; and inferring quality of life of
users.

3.1 Improving Sensors Reliability

Performance of IoT systems depends, among other characteristics,
on the reliability of the adopted sensors. In the case of teleassistance,
binary sensors are quite used in the literature and also in commercial
solutions to identify user’s activities. Binary sensors do not have the
ability to directly identify people and can only present two possible
values as outputs (“0” and “1”). Typical examples of binary sensors
deployed within smart environments include pressure mats, door sen-
sors, and movement detectors. A number of studies reporting the use
of binary and related sensors have been undertaken for the purposes
of activity recognition [26]. Nevertheless, sensor data can be consid-
ered to be highly dynamic and prone to noise and errors [25]. In the
following, we present two solutions that rely on machine learning
to improve reliability of sensors in presence detection and sleeping
recognition, respectively.

3.1.1 Presence Detection

Detecting user’s entering/leaving home can be done by relying on
door sensors. Fusing data from door- and motions-sensors could help
also in recognizing if the user received visits. Unfortunately, as said,
sensors are not 100% reliable: sometimes they loose events or detect
them several times. When sensors remain with a low battery charge
they get worse. Moreover, also the Raspberry pi may loose some data
or the connection with Internet and/or with the sensors. Also the In-
ternet connection may stop working or loose data. Finally, without
using a camera or wearable sensors we are not able to directly recog-
nize if the user is alone or if s/he has some visits.

In order to solve this kind of limitations with the final goal of im-
proving the overall performance of our IoT-based system that uses
only motion and door sensors, we defined and adopt a two-levels hi-
erarchical classifier (see Figure 1) [24]: the upper level is aimed at
recognizing if the user is at home or not, whereas the lower is aimed
at recognizing if the user is really alone or if s/he received some vis-
its.

The goal of the classifier at the upper level is to improve perfor-
mance of the door sensor. In fact, it may happen that the sensor reg-
isters a status change (from closed to open) even if the door has not

Figure 1. The hierarchical approach to presence detection.

been opened. This implies that the system may register that the user
is away and, in the meanwhile, activities are detected at user’s home.
On the contrary, the system may register that the user is at home and,
in the meanwhile, activities are not detected at user’s home. To solve,
or at least reduce, this problem, we built a supervised classifier able
to recognize if the door sensor is working well or erroneous events
have been detected. First, we revise the data gathered by the sensor-
based system searching for anomalies, i.e.: (1) the user is away and
at home some events are detected and (2) the user is at home and
no events are detected. Then, we validated those data by relying on
Moves, an app installed and running on the user smartphone4. In fact,
Moves, among other functionality, is able to localize the user. Hence,
using Moves as an “oracle” we build a dataset in which each entry
is labeled depending on the fact that the door sensor was right (label
“1”) or wrong (label “0”).

The goal of the classifier at the lower level is to identify whether
the user is alone or not. The input data of this classifier are those that
has been filtered by the upper level, being recognized as positives. To
build this classifier, we rely on the novelty detection approach [20]
used when data has few positive cases (i.e., anomalies) compared
with the negatives (i.e., regular cases); in case of skewed data.

The hierarchical approach was part of the EU project BackHome5.
To train and test it, we consider a window of 4 months for training
and evaluation (training dataset) and a window of 1 month for the
test (testing dataset). Experiments have been performed at each level
of the hierarchy. First, we performed experiments to identify the best
supervised classifier to be used at the upper level of the hierarchy.
The best performance has been obtained by relying on the SVM (with
γ = 1.0 and C = 0.452). Subsequently, we applied the novelty
detection algorithm on the data filtered by the classifier at the upper
level, to validate the classifier at the lower one. Finally, we measure
the performance of the overall approach. We compared the overall
results with those obtained by using the rule-based approach in both
levels of the hierarchy. Results are shown in Table 1 and point out

4 https://www.moves-app.com/
5 www.backhome-fp7.eu
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that the proposed approach outperforms the rule-based one with a
significant improvement.

Table 1. Results of the overall hierarchical approach with respect to the
rule-based one.

Metric Rule-based Hierarchical Improv.
Accuracy 0.80 0.95 15%
Precision 0.68 0.94 26%
Recall 0.71 0.91 20%
F1 0.69 0.92 23%

3.1.2 Sleep Recognition

We defined the sleeping activity as the period which begins when the
user goes to sleep and ends when the user wakes up in the morning.
Sleep recognition is aimed at reporting the following information: (i)
the time when the user went to sleep and woke up; hereinafter we
will refer to them as go to sleep time and wake up time, respectively;
(ii) the number of sleeping activity hours; and (iii) the number of
rest hours, which are sleeping activity hours minus the time that the
user spent going to the toilet or performing other activities during the
night.

Let us note that the simplest way to recognize sleeping activities
is relying on a rule-based approach. In particular, the following rules
may be adopted: the user is in the bedroom; the activity is performed
at night (e.g., the period between 8 pm to 8 am); the user is inactive;
and the inactivity duration is more than half an hour. Unfortunately,
when moving to the real-world, some issues arise: user movements in
the bed might be wrongly classified as awake; rules assumed all users
wake up before 8 A.M., which is a strong assumption; and the ap-
proach cannot distinguish if the user is, for instance, in the bedroom
watching TV or reading a book, thus classifying all those actions as
sleeping.

In order to overcome those limitations, an SVM (Radial Basis
Function kernel, with C = 1.0, γ = 1.0) has been adopted to clas-
sify the periods between two bedroom motions in two classes, awake
and sleep [32]. Let us note that awake corresponds to the period in
which the user goes to another room; performs activities in the bed-
room; or stays in the bedroom with the light switched on. Otherwise,
the activity is sleep.

Experiments, performed from May 2015 to January 2016 in 13
homes in Barcelona, show that the adopted machine learning solu-
tion is able to recognize when the user is performing her/his sleeping
activity. In particular, the proposed approach reaches an F1 of 96%.
Moreover, the adopted classifier is able to easily detect the go to sleep
time, the wake up time, the number of sleeping activity hours and the
number of rest hours. Figure 2 shows the comparisons between the
ground truth (obtained by questionnaires answered by the users) and
the results obtained with the machine learning approach (based on an
SVM classifier). The plot has as temporal axis (axis x) and each co-
ordinate in axis y represents nights in the dataset. The figure shows,
in red, the sleep activity hours according to the ground truth and, in
blue, the sleep activity hours calculated by the system. As both sleep
activity hours of the same night are plotted in the same y coordinate,
if the ground truth and the results coincide the color turns purple. If
the go to sleep time and/or wake up time do not coincide, there is a
text next to the corresponding side with the difference between the
time coming from the ground truth and that coming from the results.
In the middle of each bar there is the total time which results differ
from the baseline.

Figure 2. Comparison between the ground truth and the machine-learning
(SVM) one.

3.2 Providing Feedback to Carers
The role of carers is essential for remotely assisting people that need
assistance. Thus, intelligent monitoring able to understand gathered
data and process them to keep carers aware about their assisted per-
sons are needed [13].

Figure 3. The main information given to carers through the healthcare
center.

Thanks to the user-centered approach from the above-mentioned
projects, we designed friendly and useful interfaces for accessing and
visualizing relevant data and information. In particular, carers iden-
tified as the most relevant the following information (see Figure 3,
first line on the top): time spent making activities, time spent sleep-
ing, number of times the user leaves the home (during both day and
night), and number of times the user goes to toilet (during both day
and night). Moreover, they considered relevant to visually show the
rooms where the user stayed time after time during a day (see Figure
3, central part) or during a period (e.g., the last month, as shown in
Figure 4). They also want to be informed about all the notifications,
chronologically ordered (see Figure 3, on the bottom). Finally, they
want to access to some statistics to be aware about the evolution of
user’s habits in order to act accordingly.

Figure 4. 1 month reporting.

To highlight the relevance of providing suitable information to car-
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ers, let us mention here two cases that happened during Barcelona in-
stallations in collaboration with Centre de Vida Independent6. Case-
1. A woman with Alzheimer and heart problems needs continuously
assistance and, thus, a caregiver visits her daily. One day, eKauri de-
tected that no visits were received, an alarm was generated and the
caregiver called. The caregiver confirmed that she did not go to visit
the user that day. Case-2. During the afternoon, a user is accustomed
to go out for a walk. One day, she stayed in the bedroom. eKauri de-
tected the change in her habit and a caregiver called her. Actually, she
had a problem with a knee and she could not walk. A physiotherapist
was asked to go to visit her.

3.3 Assessing Quality of Life of Users
In the dependency care sector, analyzing data gathered by sensors
may help in improving teleassistance systems in becoming aware of
user context. In so doing, they would be able to automatically in-
fer user’s behavior as well as detect anomalies. In this direction, we
studied a solution aimed at automatically assessing quality of life of
people [29]. The goal is twofold: to provide support to people in need
of assistance and to inform therapists, carers and families about the
improvement/worsening of quality of life of monitored people.

First, we defined a Visual Analogic Scale (VAS) QoL question-
naire composed of the following items: MOOD, HEALTH, MOBIL-
ITY, SATISFACTION WITH CARE, USUAL ACTIVITIES (which in-
cludes SLEEPING), and PAIN/DISCOMFORT. Those items have
been categorized in two families: monitorable and inferable. Mon-
itorable items can be directly gathered from sensors without relying
on direct input from the user. Inferable items can be assessed by an-
alyzing data retrieved by the system when considering activities per-
formed by the user not directly linked with the sensors.

We performed experiments on two monitorable items (i.e., MO-
BILITY and SLEEPING) and one inferable (i.e., MOOD). In partic-
ular, we are able to detect and acknowledge the location of the user
over time as well as the covered distance in kilometers and the places
where s/he stayed. At the same time, we can detect when the user is
sleeping as well as how many times s/he is waking up during the
night. Merging and fusing the information related to MOBILITY and
SLEEPING, we may also infer the overall MOOD.

The corresponding QoL assessment system is composed of a set
of sub-modules, each one devoted to assess a specific QoL item;
namely: MOBILITY-assessment module; SLEEPING-assessment
module; and MOOD-assessment module. Each sub-module is com-
posed of two parts: Feature Extractor and Classifier. The Feature Ex-
tractor receives as input the list of notifications {n} and the list of ac-
tivities {a} and extracts the relevant features {f} to be given as input
to the Classifier. The Classifier, then, uses those features to identify
the right class Cl. This information will be then part of the overall
summary Σ.

Each Feature Extractor works with its proper list of features:

• MOBILITY: number of times the user left home, total time per-
forming outdoor activities, total time performing activities (both
indoors and outdoors), total time of inactivity, covered distance,
number of performed steps, number of visited places, number of
burned calories.

• SLEEPING: total sleeping time, hour the user went to sleep, hour
the user woke up, number of times the user went to the toilet dur-
ing the night, time spent at the toilet during the night, number of
time the user went to the bedroom during the night, time spent at

6 http://www.cvi-bcn.org/en/

the bedroom during the night, number of sleeping hours the day
before, number of sleeping hours in the five days before.

• MOOD: number of received visits, total time performing outdoor
activities, total time performing activities (both indoors and out-
doors), total time of inactivity, covered distance, number of per-
formed steps, number of burned calories, hour the user went to
sleep, hour the user woke up, number of times the user went to
the toilet during the night, time spent at the toilet during the night,
number of time the user went to the bedroom during the night,
time spent at the bedroom during the night, number of sleeping
hours the day before, number of sleeping hours in the five days
before. The Classifier is a supervised multi-class classifier built
by using data previously labeled by the user and works on five
classes, Very Bad, Bad, Normal, Good, and Very Good.

Under the umbrella of BackHome, we tested our approach with
3 users with severe disabilities (both cognitive and motor) living at
their own real homes [30]. Although the system was evaluated by
using as ground truth answers given to QoL questionnaires that is
an approach completely subjective that depends on the particularity
of each monitored user, after only 3 weeks of testing, the approach
seemed convincing. Results presented in this paper show that MO-
BILITY, SLEEPING, and MOOD can be inferred with a high accu-
racy (0.76, 0.72, and 0.81, respectively) by relying on an automatic
QoL assessment system. Let us note that SLEEPING was the method
with the lowest performance. This is due to the fact that, currently,
the system uses only motion sensors. Higher performances could be
expected when combining motion sensors with other ones, such as
mat-pressure or light sensors. MOBILITY achieved higher perfor-
mance results than SLEEPING especially when outdoor and indoor
features are merged together. In fact, using only outdoor features was
not as reliable as combining with indoor. This can be due to the re-
liability of the GPS system embedded in the smartphone that made
some errors in identifying when the user was really away. Let us also
note that this is an important result because disable people in gen-
eral spend a lot of time at their home. Finally, MOOD reported the
highest performances. Although at a first instance this could be sur-
prising, this fact might be explained considering the intrinsic correla-
tion between SLEEPING and MOBILITY, as highlighted by the ques-
tionnaire compiled daily by the users. It is worth noting that higher
performances could be expected considering also social networking
activities performed by the user.

4 Users’ Experience

The proposed solution has been developed according to a user-
centered design approach in order to collect requirements and feed-
back from all the actors (i.e., end-users and their relatives, profes-
sionals, caregivers, and social workers). For evaluation purposes, the
system has been installed in two healthy-user homes in Barcelona
(control users).

The system has been used in the EU project BackHome to monitor
disabled people. BackHome was an European R&D project that fo-
cuses on restoring independence to people that are affected by motor
impairment due to acquired brain injury or disease, with the over-
all aim of preventing exclusion [21] [22]. In BackHome, informa-
tion gathered by the sensor-based system is used to provide context-
awareness by relying on ambient intelligence [10]. Intelligent mon-
itoring was used in BackHome to study habits and to automatically
assess QoL of people. The BackHome system ran in 3 end-user’s
home in Belfast.

4
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In collaboration with Centre de Vida Independent7, from May
2015 to January 2016, eKauri was installed in Barcelona in 13 el-
derly people’ homes (12 women) over 65 years old [28]. To test
eKauri, monitored users were asked to daily answer to a question-
naire composed of 20 questions (12 optional). Moreover, they daily
received a phone-call by a caregiver who manually verifies the data.
All detected events were shown in the Web applications and revised
by therapists and caregivers. Feedback from them has been used to
improve the interface and add functionality.

Although, at least at the beginning, users were a little bit reticent,
during the monitored period they felt comfortable with the services
provided by eKauri. In particular, they really appreciated the fact that
it is not-intrusive and that it allows them to follow their normal lives.
In the case of CVI, people also be grateful for being called by phone.
In other words, it is important to provide a system that may become
part of the home without losing social interactions. Thus, a teleassis-
tance system does not substitute the role of caregivers. On the other
side, carers recognized eKauri as a support to detect users’ habits
helping in diagnosing user’s conditions and her/his decline, if any.

Currently, eKauri is installed in 40 elderly people’s homes in the
Basque Country in collaboration with Fundación Salud y Comu-
nidad8.

5 Conclusions

Considering the dependency care sector as a case study, in this paper
we highlighted how intelligent monitoring techniques, integrated in
eKauri, an IoT-based teleassistance system, allow to better provide
assistance and support to people that need assistance. In particular,
we focused on the power of intelligent monitoring in improving sen-
sor reliability, activity recognition, feedback provided to carers, as
well as quality of life of final users. As a matter of fact, results about
independent home evaluation of eKauri show a good acceptance of
the system by both home users and caregivers. Being promising, the
potential socio-economic impact of the exploitation of the system,
as well as barriers and facilitators for future deployment, have to be
analyzed before going to the market.

Summarizing, our main conclusion is that time is ripe to adopt IoT
in the real world and that intelligent monitoring makes the difference
in providing feedback to the users. However, to become pervasive, in
particular in the dependency care sector, solutions must be taken into
account the role of the final users in each phase of the development.
Moreover, even if users at home and caregivers give a positive feed-
back, one step ahead might be performed to allow that stakeholders
will take value from third generation teleassistance systems. It means
that, as technological providers, we must put into effect concrete so-
lutions that give a twist in adapting innovative strategies.
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Temporal goal reasoning for predictive
performance of a tourist application

Eliseo Marzal, Jesus Ibañez, Laura Sebastia, Eva Onaindia 1

Abstract. Many real-work smart environments make use
of IoT to be provided with context-aware services. Addition-
ally, these environments require making decisions based on
predictions about future actions. This involves the use of
goal-directed behaviour which may need reasoning about new
goals. This paper is devoted to analyze when a new goal can
be formulated. Once a plan has been computed for a given
problem, exogenous events can change the environment so
that a failure in the plan is caused or an opportunity arises.
This paper present a goal reasoning framework where context
information acquired from several external sources determines
a change that may affect the execution of the current plan.
This change may cause a failure or an opportunity. We show
how the planning system, namely TempLM, is able to predict
both failures and opportunities thanks to the analysis of the
Temporal Landmarks Graph and the Temporal Propositions
Graph built for the given problem.

1 INTRODUCTION

One key feature in the application of innovative technologies
like IoT in smart environments is the capability of providing
context-aware services. Besides real-world information, this
requires anticipatory behaviour through reasoning; that is,
making decisions based on predictions and expectations about
future actions [1]. Particularly, many real-world applications
involve unanticipated changes that may bring an alteration of
the current process or a future impact on the application or
even an opportunity to include some new functionality.

The purpose of a planning application is to achieve a goal
through the execution of a plan or course of actions. The ar-
rival of an unexpected environmental event introduces a new
piece of information that was not taken into account dur-
ing the construction of the plan and that may affect the ac-
tive plan in several ways. Typically, the first reaction is to
check if the plan is no longer executable and, if so, apply a
repair mechanism or replanning to fix the failure that pre-
vents the active plan from being normally executed. A second
consequence is that the unanticipated event provokes a future
anomaly in the plan execution. A third and more interesting
derivation is whether the new data brings an opportunity to
achieve a goal that is not currently contemplated in the active
plan.

Goal-directed behaviour is a hallmark of intelligence aimed
at discovering the changes that can be applied in the goal of

1 Universitat Politècnica de València, Valencia, Spain, Email:
{emarzal,jeibrui,lstarin,onaindia}@dsic.upv.es

an application in view of the information collected by some
unanticipated events. A dynamic formulation of new goals is
very helpful in situations where: a) the agent’s interests are
threaten and a rational anomaly response must be provided;
b) goals are no longer achievable and a graceful degradation in
the goal achievement is a convenient action; or c) goal achieve-
ment in the future is jeopardized, what affects future perfor-
mance [14]. Thereby, goal-directed reasoning can be regarded
as a context-aware responsiveness technique.

This paper is particularly devoted to analyze the first step
of a goal formulation process; that is, to answer the question
’when a new goal can be formulated?’. In some applications,
opportunistic behaviour is applied when the sensory input
triggers some enabling conditions to accomplish a task, and
reactive plans are adopted to detect problems and recover
from them automatically as well as to recognize and exploit
opportunities [2]. In dynamic and complex environments, like
robotics, opportunities are predicted and executed immedi-
ately in order to provide quick responsiveness but there is no
usually anticipation of future situations.

In less dynamic and reactive environments, typically, goal
formulation is considered when an anomaly is detected and/or
the system is self-motivated to explore its actions in the world
[14]. One approach that has been used to predict or anticipate
future plan failures is Case-Based Planning (CBP). In CBP,
when a plan fails, it is usually stored with the justification
of its failure. This information is then retrieved from the case
memory when looking for a similar situation which produced a
failure in the past. CBP may be applied before the generation
of a plan to anticipate possible problems and avoid situations
that failed in the past, or after a plan has been produced
to eliminate plans which may fail [13]. CBP presents though
several limitations in its application to smart environments: a)
predicting future failures is subject to finding an identical case
in the case memory; and b) CBP allows only for anticipating
a failure but not for detecting opportunities of pursuing a
better goal or a new goal.

In this paper, we present a goal reasoning framework that
traces the execution of a temporal plan and identifies if the
context information acquired from several sources determines
a change in the plan goals. Particularly, the reasoner detects
situations of future failures and opportunities in the plan ex-
ecution in the context of temporal planning with deadlines.
The framework draws upon TempLM, an approach based on
temporal landmarks to handle temporal planning problems
with deadlines [11, 12], and we will show how the reasoner
works on a temporal plan of a tourist application.
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Figure 1. Architecture

This paper is organized as follows. First, a motivating ex-
ample is introduced, as well as the architecture of our system.
Then, some basic definitions referring to automated planning
and the main characteristics of our planner TempLM are given.
Section 4 introduces new definitions about exogenous events
and section 5 explains the analysis that TempLM performs in
order to detect future failures or opportunities caused by ex-
ogenous events. Finally, section 6 concludes and outlines some
future work.

2 TOURIST APPLICATION EXAMPLE

In order to illustrate the foundations and contributions of
this paper, a problem in the context of smart tourist will
be used. Smart tourism involves several components that
are supported by information and communication technolo-
gies (ICT) [9]. On one hand, it refers to Smart Destinations,
which are cases of smart cities that apply smart city princi-
ples to support mobility, resource availability and allocation,
sustainability and quality of life/visits. Second, the Smart
resident/visitor experience focuses on technology-mediated
tourism experiences and their enhancement through person-
alization, context-awareness and real-time monitoring [4]. Fi-
nally, Smart business refers to the complex business ecosystem
that creates and supports the exchange of touristic resources
and the co-creation of the tourism experience. These smart
systems include a wide range of technologies in direct sup-
port of tourism such as decision support systems and the
more recent recommender systems, context-aware systems,
autonomous agents searching and mining Web sources, am-
bient intelligence, as well as systems that create augmented
realities.

In this sense, our system aims to improve the resi-
dent/visitor experience by reacting in advance to changes in
the environment that may cause failures or opportunities in
the previously computed agenda. The architecture of our sys-

tem, shown in Figure 1, is composed of the following modules:

• The Central module is the core of the system. It is in
charge of generating the initial plan, considering the user
profile and the context information. Additionally, it listens
to new events that may require to update this plan.

• The Recommender System selects the recommended
visits for a tourist, given her user profile and the context
information.

• The TempLM planner develops two main tasks: in first
place, it receives the goals computed by the recommender
system and the context information and it builds the initial
plan for the tourist; then, every time a new event is received
by the central module, TempLM analyses it to determine
whether the plan needs to be updated.

In this paper, we will focus on the second task of TempLM,
that is, on the analysis of events to detect failures or oppor-
tunities in the plan.

An example of the problem that we are facing is the follow-
ing. A tourist arrives to Valencia (Spain) and she is staying
at Caro Hotel. She uses our system to obtain a personalized
agenda for her visit. First, the recommender system analyses
her user profile to select a set of recommended visits with a
recommended duration. Let us assume that the user is recom-
mended to visit the Lonja for 1.5 hours, the Cathedral and the
Central Market for 2 hours, respectively. These recommended
goals, some other user preferences related to the time windows
when she prefers to perform the activities along with infor-
mation about the context, such as the opening hours of the
places to visit and the geographical distances between places,
are compiled into a planning problem that is formulated as an
Automated Planning Problem [8], with durative actions and
deadlines. This problem is solved by our planner TempLM.

Figure 2 shows the plan obtained for this tourist. The seg-
ments at the bottom represent the opening hours of places
(i.e. the Lonja is open from 10h until 19h) or the time win-
dows of preferences indicated by the user (i.e. the time for
having lunch ranges from 14h to 16h). The green boxes rep-
resent the actions in the plan. Specifically, in this domain,
three types of actions can be performed: visiting an attrac-
tion, having lunch and moving from one place to another.
The duration of these actions is determined by the corre-
sponding parameters, that is, the attraction to visit or the ori-
gin and destination of the movement action, respectively. For
example, the action (visit T Lonja) takes from 10:09h to
11:29h. In addition, the visit action must consider the opening
hours/preference time window; for example, the action (visit

T Centralmarket) can only be performed from 15:30h until
19h. The whole plan must fit into the available time of the
user indicated in Figure 2 as the timeline, that is, from 10h
until 19h. A more detailed description of the compilation of
this problem and domain can be found in [10].

If we consider this context, there are some events that may
occur during the visit of our tourist. For example:

• The Lonja may close earlier or open later, that is, its avail-
able time window may change; this may imply that the
visit action has to finish before than expected or it has to
be delayed, respectively.

• The Ricard Camarena restaurant may be fully-booked,
which implies that another restaurant in the area must be
selected.
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Figure 2. Plan in execution

• The user may take longer to walk from his hotel to the
Lonja, so the visit action must be delayed.

These exogenous events are received by the central mod-
ule from the external data sources and are analyzed by Tem-
pLM in order to react in consequence. There are some events
that may cause a plan failure (i.e. the attraction is closed)
or a plan modification (i.e. the user gets later that expected
to an attraction), whereas others may cause the appearance
of a free time slot that can be used to include an affor-
dance/opportunity. In this current work, we will focus on the
detection of both failures and time slots for opportunities,
and we will give some hints about how they can be solved or
exploited.

3 BACKGROUND

This section introduces some planning concepts and then it
summarizes the main characteristics of our planner TempLM.

3.1 Planning concepts

Definition 3.1 A temporal planning problem with
deadline constraints is a tuple P =

〈
P,O, I,G,D

〉
, where

P is the set of propositions, O is the set of ground actions, I
and G are sets of propositions that represent the initial state
and the goal description and D is a set of deadline constraints
of the form (p, t), denoting that proposition p must be achieved
within t time units.

For example, a proposition in I can be (be T Caro), in-
dicating that initially the tourist is at the Caro hotel. It is
important to note that, apart from the propositions and func-
tions that are initially true, the initial state I may also contain
timed initial literals (TILs). TILs, which were first introduced
in PDDL2.2[6], are a very simple way of expressing that a
proposition becomes true or false at a certain time point. A
TIL can be represented as a pair (p, t), where p is a (positive
or negative) proposition and t is a time point. Specifically,
if p is a positive proposition, then t indicates the time point
at which p becomes true and if it is a negative proposition,
then t indicates the time point at which p becomes false. For

example, ((not (open Lonja)),19h) is a TIL in I that indicates
that the Lonja will close at 19h.

Definition 3.2 A simple durative action a ∈ O is defined
as a tuple (pre`, eff`, pre↔, prea, effa, dur)[5]:

• pre` (prea) are the start (end) conditions of a: at the state
in which a starts (ends), these conditions must hold.

• eff` (effa) are the start (end) effects of a: starting (end-
ing) a updates the world state according to these effects. A
given collection of effects effx, x ∈ {`,a} consists of:

– eff−x , propositions to be deleted from the world state;

– eff+
x , propositions to be added to the world state

• pre↔ are the invariant conditions of a: these must hold at
every point in the open interval between the start and end
of a.

• dur is the duration of a.

An example of an action is shown here:
Action: Eat(?t: tourist, ?r: restaurant)

pre` = { (free table ?r) }, prea = ∅
pre↔ = { (open ?r), (time for eat ?t), (be ?t ?r) }
eff` = ∅, effa = { (eaten ?t) }
dur = (eat time ?t ?r)

Definition 3.3 A temporal plan Π is a set of pairs (a, t),
where a ∈ O and t is the start execution time of a.

The temporal plan for the running example is shown in
Figure 2.

Definition 3.4 Given a temporal plan Π, the induced plan
Π∗ for Π is the set of pairs defined as [7]:

Π∗ = {(a`, t), (aa, t+ dur(a))}, ∀(a, t) ∈ Π

For simplicity, we will refer to any pair in Π∗ as an ”action”.
For example, Π∗ would include ((walk T Caro Lonja)`,

10:00) and ((walk T Caro Lonja)a, 10:09). In the induced
plan, we only consider the start and the end time points of
the actions in the original temporal plan because these are the
time points interesting for building the state resulting from
the execution at a certain time point t, as shown below.
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Definition 3.5 Given a state St defined as a set of proposi-
tions that are true at time t and a pair (ax, t) ∈ Π∗, an action
ax is applicable in St if prex(a) ∪ pre↔(a) ⊆ St.

With this definition, only the start and the end time points
of the actions are considered. In order to mitigate the fact that
the overall conditions are not checked during the execution of
the action, we check them at the start and the end of the
action, although this is not consistent with the definition of a
durative action in PDDL2.1 (where the overall conditions of
an action a starting at t have to be fulfilled during the interval
[t+ ε, t+ dur(a)− ε]).

Definition 3.6 Given a time point t, let Π∗t be the subset
of actions (a, t′) ∈ Π∗ such that t′ < t. A temporal state
St is composed by a set of propositions p ∈ P and a set of
TILs (denoted by Γt) resulting from applying the actions in
Π∗t from I (denoted by I →Π∗

t
St), that is, it is assumed that

the actions in Π∗t are applicable in the corresponding state.
Formally, we define St recursively, where S0 = I:

St = St−1 −


 ⋃

∀(ax,t′)∈Π∗
t

eff−x (a)


∪


 ⋃

∀(ax,t′)∈Πt

eff+
x (a)




For example, the state S10:09 reached after the execution of
the action ((walk T Caro Lonja)a,10:09h) will be the same
as the initial state but S10:09 will contain the new location
of the tourist (be T Lonja). It is important to notice that if
we compute the state S10:05, then the location of the user is
unknown because the proposition (be T Caro) is deleted at the
start time of the execution of the action and the proposition
(be T Lonja) is not added until the end time of the action.

Definition 3.7 The duration (makespan) of an induced
plan Π∗ executed from the initial state of the problem is
dur(Π∗) = max∀(aa,t)∈Π∗

(
t
)
−Ti; i.e., the end time of the ac-

tion that finishes last minus the time point at which the plan
starts Ti, assuming that all the actions in Π∗ are applicable
in the corresponding state.

For instance, dur(Π∗) in Figure 2 is 7 h. and 9 min., because
the last action ends at 17:09h and the plan starts at 10h.

Definition 3.8 An induced plan Π∗ is a solution for a
temporal planning problem with deadline constraints
P =

〈
P,O, I,G,D

〉
if the following conditions hold:

1. G ⊆ Sg, where I →Π∗
t
Sg, where t = dur(Π∗)

2. ∀(p, t) ∈ D : ∃t′ ≤ t : p ∈ St′ , where I →Π∗
t′
St′

This definition indicates that it is not only necessary that
a plan Π∗ reaches the goals, but also that all the propositions
present in D are achieved before the corresponding deadline.

3.2 TempLM

TempLM [11] is a temporal planning approach for solving
planning problems with deadlines that has demonstrated an
excellent behaviour in the detection of unsolvable problems
and the resolution of overconstrained problems. It draws upon
the concept of temporal landmark, which is a proposition that

is found to necessarily happen in a solution plan in order to
satisfy the deadlines of the problem goals. The set of tem-
poral landmarks extracted from a problem along with their
relationships form a temporal landmarks graph (TLG) that
is conveniently used to take decisions during the construction
of the solution plan and for guiding the search process.

Definition 3.9 A Temporal Landmarks Graph (TLG)
is a directed graph G = (V,E) where the set of nodes V
are landmarks and an edge in E is a tuple of the form
(li, lj ,≺{n,d}) which represents a necessary or dependency or-
dering constraint between the landmarks li and lj, denoting
that li must happen before lj in a solution plan.

Landmarks are also annotated with various temporal inter-
vals that represent the validity of the corresponding temporal
proposition ([11]):

• The generation interval of a landmark is denoted by
[ming(l),maxg(l)]. ming(l) represents the earliest time
point when landmark l can start in the plan. maxg(l) rep-
resents the latest time point when l must start in order to
satisfy D.

• The validity interval of a landmark l is denoted by
([minv(l),maxv(l)]) and it represents the longest time that
l can be in the plan.

• The necessity interval of a landmark l is denoted by
([minn(l),maxn(l)]) and it represents the set of time points
when l is required as a condition for an action to achieve
other landmarks.

These intervals are given some initial values that are then
updated by means of a propagation method, as explained in
[11]. In order to be consistent, both the generation interval
and the necessity interval must fall into the validity interval.
Figure 3 shows a part of the initial TLG built for this prob-
lem. The validity interval of a landmark is represented by a
segment, the maxg is indicated by a small bold vertical line
(ming is always equal to minv) and the necessity interval is
represented by a green box inside the segment. For example,
the validity interval of the landmark (visited T Cathedral) is
[12:05h, 19h] and the maxg = 19h; the necessity interval for
this landmark is empty.

TempLM applies a search process in the space of partial
plans in order to find a solution plan for a problem P. A node
in the search tree is defined as n = (Π, St, TLGΠ), where Π
is the conflict-free partial plan of n, St is the state reached at
time t = dur(Π) after the execution of Π from I and TLGΠ is
the refined TLG after taking into account the information in
Π. Given a node n of the search tree, a successor of n results
from adding an executable action a to the partial plan of n,
provided that a does not cause conflicts with the actions of
n. Hence, the plan of the successor node will contain a newly
added action, information which can be exploited to find new
temporal landmarks in the TLG [12].

4 CHANGES IN THE ENVIRONMENT

This section introduces some definitions related to the man-
agement of changes in the environment. We assume that in
our system changes happen due to exogenous events.
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Figure 3. Initial partial TLG for this problem

Definition 4.1 We define an exogenous event θ as a tuple
(ta, p, tc), where ta is the arrival time point, that is, the time
point when the exogenous event is received in the system, and
(p, tc) denotes a TIL.

For example, let ((not (open Centralmarket)),17h) be a TIL
in I that indicates that the Central Market will close at 17h.
If at 14h it is known that the Central Market will close one
hour earlier, the exogenous event that will be received by the
system is the following: (14h, (not (open Centralmarket)), 16h)
and it will invalidate the previous TIL.

Definition 4.2 We say that two exogenous events (ta, p, tc)
and (t′a, p

′, t′c) are linked2 if they refer to the same proposition
(p = p′) and their arrival time is the same (ta = t′a).

We can indicate a modification in the actual duration of
an action with two linked exogenous events that refer to the
proposition(s) that will be achieved as a result of the execu-
tion of the action. The first one deletes a proposition p at the
time it was expected and the second event adds that propo-
sition at the new time. For example, if at 13h it is known
that the action (eat T RicardCamarena) to be executed from
14h to 15:30h will take 30 minutes more than expected, these
two linked exogenous events are received by the system: (13h,
(not (eaten T)), 15:30h) and (13h, (eaten T), 16h). The first
one deletes the expected event of the tourist having finished
lunch at 15:30h and the second adds the proposition at the
time when the tourist will actually finish having lunch.

We denote by tcur the current execution time when an event
θ is received and by Sotcur

the current (observed) state. There-
fore, Sotcur

will contain the propositions that are true in the
current world and the functions with their actual value in
the current world. Moreover, let Γtcur−ε be the set of TILs
in the state at the time immediately prior to tcur. S

o
tcur

will
contain the TIL in θ plus the TILs in Γtcur−ε that are consis-
tent with θ. For example, as Figure 2 shows, Γ14h−ε contains,
among others, the TILs in Table 1 (top). If the event θ =(14h,
(not (open Centralmarket)), 17:30h) is received, then Γ14h in
Sotcur

will be updated as shown in Table 1 (bottom). That is,
the time window in which the Central Market remains open
is updated from [15:30h, 19h] to [15:30h, 17:30h].

Definition 4.3 We define the executed partial plan at
tcur, denoted by Π∗ex, as:

Π∗ex = {(a, t) ∈ Π∗ : t < tcur}
2 For simplicity, we denote by θ a single event or two linked events.

Table 1. TILs at 14h

Γ14h−ε
((open Centralmarket), 15:30h),
((not (open Centralmarket)), 19h),
((not (open Ricardcamarena)), 17h), ...
Γ14h

((open Centralmarket), 15:30h),
((not (open Centralmarket)), 17:30h),
((not (open Ricardcamarena)), 17h), ...

Definition 4.4 We define the remaining partial plan at
tcur, denoted by Π∗r , as:

Π∗r = {(a, t) ∈ Π∗ : t ≥ tcur}

Definition 4.5 We define the resulting state of Π∗ex
(Stcur ) as the state reached after executing the actions in Π∗ex,
that is: I →Π∗ex Stcur

Definition 4.6 We define the difference between two states
Si and Sj as:

Diff(Si, Sj) = (Si − Sj) ∪ (Sj − Si)

Definition 4.7 A discrepancy is a non-empty difference
between the state that should have been reached with the ex-
ecuted part of the plan Stcur and the current observed state
Sotcur

, that is: Diff(Stcur , S
o
tcur

) 6= ∅.

Obviously, the discrepancy between these two sets will at
least contain the TIL from the event θ. For example, if we
consider the example in Table 1, the event that arrives at
14h is reflected in the resulting Γ. Discrepancies may cause
failures or opportunities in the plan.

Definition 4.8 We say that there is a failure in the plan
if:

1. There is a discrepancy at tcur, and
2. Sotcur

→Π∗r Sg : G 6⊆ Sg, that is, the plan does not reach the
goal due to this discrepancy.

Note that Π∗ was a solution for the initial planning prob-
lem, that is, it was executable from I. This definition indicates
that there has been a change in the environment at a certain
time point between I and tcur which causes a failure in the
execution of action a and, consequently, a failure in the exe-
cution of the plan.
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Definition 4.9 We say that there is an opportunity in the
plan if:

1. There is a discrepancy at tcur, and
2. Sotcur

→Π∗r Sg : G ⊆ Sg, that is, the plan reaches the goal
in spite of this discrepancy, and

3. this discrepancy causes a different execution of the remain-
ing plan, that is, there is a time point t where the state
reached from Stcur is different from the state reached from
Sotcur

; formally, given t ∈ [tcur, dur(Π
∗)], let Π′ be the set

of actions in Π∗r scheduled to start between tcur and t; we
define Sot and St as Sotcur

→Π′ S
o
t and Stcur →Π′ St, re-

spectively; the execution of the remaining plan is different
if Diff(St, S

o
t ) 6= Diff(Stcur , S

o
tcur

).

An opportunity in this case is defined as a discrepancy that
still allows to reach the goals but that causes a difference in
the execution of the original plan.

It could be the case that a discrepancy does not cause a
failure or an opportunity, because it affects an object that is
not considered in the current plan.

5 DETECTION OF FAILURES AND
OPPORTUNITIES IN TempLM

The TLG that TempLM builds to solve a planning problem
gives an schema of which propositions must be achieved in the
plan, and when they must be achieved in order to reach the
goals on time. Additionally, a Temporal Proposition Graph,
which gives an exact picture of the propositions that are
achieved in the plan and when they are achieved, is defined:

Definition 5.1 A Temporal Proposition Graph (TPG)
for a given induced plan Π∗ is a representation of the time
interval in which a proposition p ∈ P is true during the ex-
ecution of Π∗. This is denoted as the validity interval of the
proposition p. A TPG also defines the generation and neces-
sity intervals of a proposition, with the same meaning as for
a landmark in the TLG.

Figure 4 shows the TPG for the plan in Figure 2. In this
case, all the propositions that appear during the execution of
the plan are represented. It can be observed that the validity
interval of the propositions in the TPG is much smaller than
in the TLG (see Figure 3), given that the TLG is just an
estimation, whereas the TPG is an accurate representation of
the solution plan. For example, in Figure 3, proposition (be
T Cathedral) ranges from 10:05h until 19h, whereas in Figure
4 it is shrunk to the interval [11:34h, 13:34h].

The aim of this section is to explain how both the TLG
and the TPG can be used in order to detect failures and
opportunities due to exogenous events that may arrive during
the execution of a plan, and also to give some hints about how
they can be solved or exploited.

As explained in section 2, when a new exogenous event is
detected by the central module, TempLM receives the cur-
rent execution time tcur, the current observed state Sotcur

and
the exogenous event θ as input. Then, TempLM computes the
state that should have been reached as a result of the exe-
cution of the plan until time tcur, that is, it computes Stcur .
The next step is to analyze whether the event θ has caused a

Figure 5. Example of future failure

discrepancy between Stcur and Sotcur
, as indicated in Defini-

tion 4.7. In case of a discrepancy between both states, several
cases can be found.

Case 1. The discrepancy does not affect the plan
This case corresponds to a situation where the exogenous

event θ = (ta, p, tc) affects a proposition that has not any
influence in the plan. This means that the proposition p that
causes the discrepancy is not present in the TPG of the plan
and it is not mutex [3] with any other proposition in the TPG.
Formally, TempLM does not detect any failure or opportunity
if:

p /∈ TPGΠ∗ ∧ ¬∃p′ ∈ TPGΠ∗ : mutex(p, p′)

For example, let us assume that this exogenous event (10,
(not (free table Cantinella)), 13h) is received, indicating that
the Cantinella restaurant will not have free tables at 13h. This
does not affect the current plan, given that the restaurant
where the tourist is going to have lunch is a different one.

Case 2. A failure is detected
The second analysis is aimed at detecting a failure caused

by an exogenous event θ = (ta, p, tc). We distinguish two
situations: when the event causes a present failure, that is,
ta = tc = tcur or when it causes a future failure, that is,
ta = tcur < tc. In both cases, a proposition p′ : mutex(p, p′)
which belongs to the TPG is deleted before expected when it
is still needed to reach the goals. Formally, TempLM detects
a failure if:

p′ ∈ TPGΠ∗ ∧ tc < maxn(p′)

For example, if at tcur = 10h an event indicating that
the Cathedral will be closed at 11h arrives, expressed as
θ =(10, (not (open Cathedral)), 11h), a failure is caused be-
cause tc =11h, mutex((not(openCathedral)), (openCathedral))
and tc < maxn(open Cathedral) =13:34h, as it can be ob-
served in Figure 5. In this case, TempLM is able to easily
predict a future failure due to an exogenous event.

Once the failure is detected, two situations can occur: (1)
the problem is unsolvable or (2) the problem can be solved
using other elements defined in the context. In order to distin-
guish these situations, TempLM finds the node (Π, S, TLGΠ∗ex)
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Figure 4. Temporal Proposition Graph of the plan

in the search space built when solving the original problem,
where S = Stcur computed from Π∗ex. If the TLG in this node
is updated with the information about the event θ, this new
information is propagated across the TLG (obtaining TLGθΠ∗)
and an inconsistency [11] between two intervals of a given
proposition is found, then the problem is unsolvable. It is
important to remark that the propositions in the TLG are
necessary to solve the problem (they are landmarks); there-
fore, if an inconsistency is found in the intervals associated to
a landmark, then the problem is unsolvable. Formally:

∃p ∈ TLGθΠ∗ : maxg(p) /∈ [minv(p),maxv(p)]

For example, if the event (10, (not (open Cathedral)), 11h)
arrives, then the problem is unsolvable because, due to θ, the
value of the validity interval of (open Cathedral) changes, i.e.
maxv(open Cathedral) = 11h. This information is propagated
to the proposition (visited T Cathedral) in the TLG∗Π, which
updates maxg(visited T Cathedral) = 11h, indicating that, in
order to reach the goals, the Cathedral must be visited before
11h. Given that this value does not belong to the validity
interval of (visited T Cathedral), as it can be observed in Figure
3, there is an inconsistency in these intervals. Therefore, we
can affirm that the problem, after the arrival of the event, is
unsolvable. In fact, there is not a plan that satisfies the goals,
because even in the case that the Cathedral is the first visit,
it takes 2 hours and then, it would last until 12:05h, which is
later than the time of closing.

In any other case, TempLM performs the search of
a new plan starting from Π∗ex, that is, Π∗r is dis-
carded and substituted by the eventually new plan
found. If, for example, an event indicating that the Ri-
card Camarena restaurant will be fully-booked at 13:45h
(θ =(13, (not (free table Ricardcamarena)),13:45h) arrives,
then TempLM detects a failure because tc =13:45h <
maxn(free table Ricardcamarena) =14:00h. In this situation,
TempLM would be able to find a different solution plan, be-
cause having lunch at Ricard Camarena restaurant is not a

Figure 6. First example of a future opportunity

hard goal; the hard goal is (eaten T), which can be achieved
by having lunch in any other restaurant. Therefore, a new
plan from Π∗ex in which the tourist has lunch in a different
restaurant could be found by TempLM.

Case 3. An opportunity is detected
The last analysis is devoted to detect an opportunity when

a new exogenous event θ = (ta, p, tc) arrives. In this case, p
is a proposition that is achieved before than expected, which
permits to consider an action as finished before its complete
execution. Formally, TempLM detects an opportunity if:

p ∈ TPGΠ∗ ∧ tc < minv(p)

For example, the arrival of an event in which the visit to
the Cathedral finishes at 13h, i.e. θ =(13, (visited Cathedral),
13h), causes the detection of an opportunity. The red arrow in
Figure 6 indicates the new time point at which the proposition
(visited Cathedral) is achieved and the red rectangle indicates
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Figure 7. Second example of a future opportunity

the available interval of time thanks to this event (which can
be considered as an opportunity). It can be observed that, in
this example, tcur =13h < minv((visited Cathedral)) =13:34h
and the necessity interval of (open Cathedral) and (be T Cathe-
dral) are shrunk because (visited Cathedral) has been achieved
before than expected. At this moment, the recommender sys-
tem could be invoked to obtain a new visit (a new goal) to
be performed during the time interval between 13h and 14h,
before (be T Ricardcamarena). TempLM would obtain a plan
to reach this new goal and then the remaining original plan
would be executed.

There is another case where TempLM can detect an oppor-
tunity:

p ∈ TPGΠ∗ ∧ tc > minv(p)∧

¬∃q ∈ TPGθΠ∗ : maxg(q) /∈ [minv(q),maxv(q)]

This case represents the situation when a proposition is
achieved later than expected, but it does not affect the
achievement of the remaining goals. That is, there is not any
proposition q whose intervals are inconsistent after updating
the TPGΠ∗ with the exogenous event and propagating the
information across the TPGΠ∗ to obtain TPGθΠ∗ .

For example, let us assume that the tourist now prefers
to have lunch between 14:30h and 16h, instead of between
14h and 16h, but the action still takes 90 minutes. This
situation triggers the following exogenous event: θ =(13,
(time for eat T), 14:30h). This event causes that TempLM de-
tects an opportunity because minv(time for eatT) =14:00h
and tc =14:30h; this provokes that minv(time for eat T) is
updated and this information is propagated to minv(eatenT)
(maxg(eaten T) still belongs to the corresponding validity in-
terval). Additionally, the necessity intervals of (time for eat
T), (open Ricardcamarena) and (be T Ricardcamarena) are also
updated, as it is shown in Figure 7. The available time for the
opportunity, also shown in Figure 7, can be used to reach a
new goal recommended by the recommender system, as ex-
plained above.

Thanks to the analysis presented in this section, we have
been able to show how TempLM is able to predict future fail-
ures or opportunities.

6 CONCLUSIONS AND FURTHER
WORK

This paper has introduced a goal reasoning framework where
context information acquired from several external sources
determines a change that may affect the execution of the cur-
rent plan. This change may cause a failure or an opportunity.
We have shown how the planning system, namely TempLM, is
able to predict both failures and opportunities thanks to the
analysis of the Temporal Landmarks Graph and the Temporal
Propositions Graph built for the given problem.

As for further work, our aim is to implement in TempLM
the analysis described in this paper. Then, we will be able
to test the system in a real environment. This will imply an
analysis to decide which events should be considered among
the huge amount of context information that is supplied by
external sources.
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An Intelligent System for Smart Tourism
Simulation in a Dynamic Environment

Mohannad Babli, Jesús Ibáñez, Laura Sebastiá, Antonio Garrido, Eva Onaindia 1,2

Abstract. In this paper, we present a smart tourism system
that plans a tourist agenda and keeps track of the plan exe-
cution. A Recommendation System returns the list of places
that best fit the individual tastes of the tourist and a planner
creates a personalized agenda or plan with indication of times
and durations of visits. The key component of the system is
the simulator in charge of the plan monitoring and execution.
The simulator periodically updates its internal state with in-
formation from open data platforms and maintains a snapshot
of the real-world scenario through live events that communi-
cate sensible environmental changes. The simulator builds a
new planning problem when an unexpected change affects the
plan execution and the planner arranges the tourist agenda
by calculating a new plan.

1 INTRODUCTION

The exponential growth of the Internet of Things (IoT) and
the surge of open data platforms provided by city govern-
ments worldwide is providing a new foundation for travel-
related mobile products and services. With technology being
embedded on all organizations and entities, the application
of the smartness concept to address travellers’ needs before,
during and after their trip, destinations could increase their
competitiveness level [2].

Smart tourism differs from general e-tourism not only in
the core technologies of which it takes advantage but also in
the approaches to creating enhanced at-destination experi-
ences [8]. In the work [14], authors identify the requirements
of smart technology integration in personalized tourism expe-
riences including information aggregation, ubiquitous mobile
connectedness and real time synchronization.

Many tourism applications provide a personalized tourist
agenda with the list of recommended activities to the user
[12, 13, 5, 16, 15]. In many cases, these systems provide a dy-
namic interaction that allows the user to interact with such
agenda by adding or removing activities or changing their
order. Additionally, the use of GPS in mobile devices al-
lows recommender systems to locate the future user’s location
and recommend the most interesting places to visit. However,
most of these applications work with fixed and static infor-
mation throughout the execution of the activities. In other
words, they do not easily react before changes in the world;

1 Universitat Politècnica de València, Valencia, Spain, Email:
{mobab, jeibrui, lstarin, agarridot, onaindia}@dsic.upv.es

2 This work has been partially supported by Spanish Government
Project MINECO TIN2014-55637-C2-2-R

for instance, a museum that closes, a restaurant which is fully
booked, a bus route that is now diverted, etc. This has critical
implications on the way tourists regard their experiences. Ac-
tivities, even pre-designed in advance, must be dynamically
adapted and personalized in real time. One essential prerequi-
site for smart technology is real time synchronization, which
implies that information is not limited to a-priori collection
but can be collected and updated in real time [14].

Creating an agile and adaptable tourist agenda to the dy-
namic environment requires tracing the plan and checking
that activities happen as expected. This involves plan moni-
toring and possibly finding a new tourist agenda organization
in case some particular activity can not be realized. In this
paper, we relate our experience with a context-aware smart
tourism simulator.

From the monitoring and simulation perspective, there
exist many frameworks for different programming lan-
guages that support discrete event-based simulators (e.g.
http://jamesii.informatik.uni-rostock.de/jamesii.org,

http://desmoj.sourceforge.net/home.html,

http://simpy.readthedocs.io/en/latest/). Although
they can be programmed for very particular scenarios, they
fail to take a general domain description and simulate its
behavior in highly dynamic environments. At this stage,
planning technology can be very valuable. The Planning
Domain Definition Language (PDDL) provides a simple way
to define the physics of the domain (a tourism domain in
our case, although it is valid for any other scenario) and
the particular problem that instantiates such a domain. In
PDDL we can define the activities to be executed similarly to
rules, with their preconditions, effects and other interesting
features like duration, cost, reward, etc. The result of using
planning in a tourism domain is a plan, represented as the
agenda of activities the user will follow. The plan needs to
be validated, executed and adapted, if necessary, to new
information. VAL is a plan validation tool [9] that can be
used to validate and simulate a successful plan execution.
However, VAL does not consider the dynamic changes of the
world and, consequently, it cannot react to them.

In this work, we present a smart tourism system that at-
tempts to overcome the previous limitations. Particularly, we
use a PDDL tourism description that can be easily adapted
to many different scenarios with new activities, preconditions,
effects and points of interest. We run a planner to obtain a
plan and we simulate the plan execution like in a real con-
text, dynamically simulating changes in the environment. The
simulator reacts to the changes by checking whether the real
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Figure 1. GLASS Architecture

world matches the expected one or not and reformulating the
PDDL problem if a failure in the plan is detected, while trying
to reuse as many of the original set of recommended activities
as possible.

This paper is organized as follows. Next section outlines the
architecture of the smart tourism system. Section 3 presents
the planning description of the tourism domain and highlights
the main components of a planning problem. Section 4 de-
scribes the simulator behaviour with a special emphasis on
the reformulation of a planning problem. Section 5 presents a
case of study of a tourist plan in the city of Valencia in Spain
and last section concludes.

2 GLASS ARCHITECTURE

This work is part of the ongoing GLASS3 (Goal-management
for Long-term Autonomy in Smart citieS) project applied to
a tourism domain. The idea here is to apply different strate-
gies for dividing the set of goals (i.e. tourist recommendations
based on previous plans executions by other tourists) for each
user by using different utility recommendations systems. The
GLASS architecture is shown in Figure 1. As can be seen,
the architecture simply consists of a two-process loop: plan-
ning module and simulation+monitoring that share common
information.

On the one hand, the input information is retrieved from
different data sources. First, we need the user profile with
the explicit interests of the user, the goals and preferences
(such as points of interest he/she wants to visit), and tem-
poral constraints. Second, we need to access a different set
of databases that identify and categorize the points of in-
terest (e.g. museums, restaurants, etc.), their timetable, and
geographic sources to find out routes, distances and times be-
tween points. Currently, we use standard APIs, such as Google
Places4 and Directions5 for this, but other open databases

3 More info at http://www.plg.inf.uc3m.es/~glass
4 More info at https://developers.google.com/places/web-service
5 More info at https://developers.google.com/maps/documentation/

would be also valid, such as OpenStreetMap6. Third, there
exists a snapshot of the environment or real-world scenario
where the plan is executed. Since this world is highly dy-
namic and can change frequently (e.g. the opening hours of a
museum has changed, or a restaurant is fully booked and the
duration for having lunch is longer than expected), we get the
new information as live events.

On the other hand, the planning module takes the user
profile and the problem information to create a planning sce-
nario in a PDDL format, as described in Section 3. We need to
model the user preferences, constraints and the actions that
the user can do, such as visit or move. The output of this is
a plan, as a sequence of actions the user has to execute. As a
proof of concept, in GLASS we actually simulate that execu-
tion rather than having a real execution that would require
a true group of tourists equipped with sensoring information
to their current geographic positions, pending and already
satisfied goals, etc. This simulation process, more detailed in
Section 4, takes the plan and creates a timeline structure to
run a timed events based execution. It simulates and monitors
the resulting states of the world, according to the changes in
the plan, that is the effects that actions provoke and, proba-
bly, being also modified by the live events. This simulation is
shown in a specially designed Graphical User Interface that
shows what is happening at any time. If the expected state is
different to the real state, i.e. a discrepancy has been discov-
ered, because some live events prevent the remaining actions
in the plan from being executed, a (re)planning module be-
comes necessary. The idea is to reuse the same planning mod-
ule, thus closing the loop, with a new PDDL domain+problem
specification to adapt the plan to the new emerging scenario.

3 PLANNING MODULE

The main goal of our system is to provide a personalized plan
to a given tourist. This resulting plan has to reflect the prefer-
ences of the tourist according to his/her profile (demographic
classification, the places visited by the user in former trips and
the current visit preferences). Moreover, in order to build this
plan, the duration of the activities to perform, the opening
hours of the places to visit and the geographical distances be-
tween places (time to move from one place to another) needs
also to be considered. Thus, solving this problem requires the
use of a planning system capable of dealing with durative ac-
tions to represent the duration of visits; temporal constraints
to express the opening hours of places and soft goals for the
user preferences. Soft goals will be used to denote the prefer-
able visits of the user, the non-mandatory goals that we wish
to satisfy in order to generate a good plan that satisfies the
user but that do not have to be achieved in order for the plan
to be correct. In our case, the goal of visiting a recommended
place according to the user profile (the list of potential places
that the user can visit is returned by a Recommender Sys-
tem), is defined as a soft goal (more details in section 3.2).
Among the few automated planners capable of handling tem-
poral planning problems with preferences, we opted for OPTIC
[1] because it handles the version 3.0 of the popular Planning
Domain Definition Language (PDDL) [7], including soft goals.

directions
6 More info at http://wiki.openstreetmap.org/wiki/API
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All the information required by OPTIC to build the plan is
compiled into a planning problem encoded in PDDL3.0 lan-
guage, as described in the following sections.

3.1 Initial state

The initial state of a planning problem describes the state
of the world when the plan starts its execution. The initial
state must reflect the opening hours of the places to visit, the
distances between them, the initial location of the user, etc.
Some information is expressed with predicates and functions,
while other information is represented by Timed Initial Liter-
als (TILs). TILs, which were first introduced in PDDL2.2, are
a very simple way of expressing a restricted form of exogenous
events that become true or false at given time points [3].

The predicate (be tourist ?l) is used to represent the
location of the user and the pair of TILs (at 0 (active

tourist)) and (at tavailable (not (active tourist))) de-
termine the available time of the user for the tour, where
tavailable is the difference between the time when the tour
starts and finishes. The time indicated in the TILs is relative
to the starting time of the plan; that is, tavailable = 540 refers
to 7pm if the plan starts at 10am. Another pair of TILs is
used to define the time window in which the tourist prefers
to have lunch. For example, if the preference is between 2pm
and 4pm, the TILs are (at 240 (time for eat tourist))

and (at 360 (not (time for eat tourist))).
The duration of a particular visit ?v for a tourist ?t is de-

fined through the numeric function (visit time ?v ?t). As-
signing a value to a numeric function gives rise to a numeric-
valued fluent ; for example, (= (visit time Lonja tourist)

80) (details about calculating the duration of the visit are
shown in the following section). The list of available restau-
rants is given through the predicate (free table ?r); for
example, (free table ricard camarena). For each restau-
rant, we define the time slot in which it serve meals, which
may depend on the type of restaurant, closing time of the
kitchen or other factors. Both, places to visit and restau-
rants, have an opening hour and a closing hour that are
specified by a TIL: (at topen (open a)) and (at tclose (not

(open a))), to indicate when the place/restaurant is not
longer available. For example, (at 0 (open Lonja)), (at

540 (not (open Lonja))).
The distance between two locations ?a and ?b is defined by

the function (moving time ?a ?b), which returns the time
in minutes needed to travel from ?a to ?b by using the
travel mode preferred by the user. The time to move between
two places is represented through a numeric fluent (e.g., (=
(moving time caro hotel Lonja) 9)), where the value 9 is
taken from Google Maps.

3.2 Goals and preferences

We handle two types of goals: hard goals, that represent the
realization of an activity that the user has specified as manda-
tory (e.g., the final destination at which the user wants to fin-
ish up the tour (be tourist caro hotel)); and soft goals or
preferences, that represent the realization of a desirable but
non-compulsory activity (e.g., visiting the Lonja (preference

v3 (visited tourist Lonja))). Preferences are expressed
in PDDL3.0 so we need to define how the satisfaction, or

violation, of these preferences will affect the quality of a plan.
The penalties for violation of preferences (costs) will be han-
dled by the planner in the plan metric to optimize at the time
of selecting the best tourist plan; i.e., the plan that satisfies
the majority of the tourist preferences and thereby minimizes
the penalties for violation.

The objective is to find a plan that achieves all the hard
goals while minimizing a plan metric to maximize the prefer-
ence satisfaction; that is, when a preference is not fulfilled, a
penalty is added to the metric. Specifically, we define penal-
ties for non-visited POIs and for travelling times.

The penalty for non-visited places is aimed to help the plan-
ner select the activities (tourist visits) with a higher priority
for the user. Given a plan Π, this penalty is calculated as the
ratio between the priority of the activities not included in Π
and the priority of the whole set of activities recommended
to the user (RA):

Pnon visited =

∑
a∈RA−Π

Pra∑
a∈RA

Pra

For example, if the priority for visiting the Lonja is 290, and
the sum of the priorities of all the visits is 2530, the penalty
for not visiting the Lonja would be expressed in PDDL as: (
/ (* 290 (is-violated v3)) 2530). The priority of the ac-
tivities (Pra) is calculated by a hybrid Recommender System
(RS) which returns a value between 0 and 300 according to
the estimated degree of interest of the user in activity a. The
value of Pra is also used by the RS to return a time interval
that encompasses the minimum and maximum recommend-
able visit duration following a normal distribution N

(
µa, σ

2
a

)
,

where µa represents the average visit duration for a typical
tourist [10]. Thus, the higher the value of Pra, the longer the
visit duration.

The penalty for movements enforce a reduction in the time
spent in travelling from one location to another, so that closer
activities are visited consecutively. This penalty is calculated
as the duration of all move actions of Π (Πm):

Pmove =

∑
a∈Πm

dur(a)

dur(Π)

The function (total moving time tourist) accumulates
the time spent in transportation actions, so this penalty would
be defined in PDDL as: ( / (total moving time tourist)

540). The plan metric to be minimized by the planner is ex-
pressed as the sum of both penalties: Ptotal = Pnon visited +
Pmove.

3.3 Actions

We define three actions in the tourism domain. The action to
move from one location to another is defined in Figure 2. It
takes as parameters the user ?per, the initial location ?from

and the destination ?to. The duration of the action is set to
the estimated/actual time to go from ?from to ?to, which is
stored in the database. The preconditions for this action to
be applicable are: (1) the user is at location ?from and (2) the
time window for the available time of the user is active during
the whole execution of the action. The effects of the action
assert that (1) the user is not longer at the initial location, (2)
the user is at the new location at the end of the action and (3)

17



(:durative-action move
:parameters (?per - person ?from - location

?to - location)
:duration (= ?duration (moving_time ?to ?from) )
:condition

(and
(at start (be ?per ?from))
(over all (active ?per)))

:effect
(and

(at start (not (be ?per ?from)))
(at start (walking ?per))
(at end (be ?per ?to))
(at end (not (walking ?per)))
(at end (increase (total_moving_time ?per)

(moving_time ?from ?to)))))

Figure 2. Action move of the tourism domain

the time spent in move actions is modified according to the
movement duration. In order to indicate the position of the
user during the execution of the action, a walking predicate
is asserted at the start of the action and deleted at the end
of the action. In this paper, we only consider walking as the
move action; however, more transportation modes according
to the user’s preferences can be included; e.g., cycling, driving,
and public transport, as in [10] .

The action to visit a place is defined in Figure 3, whose
parameters are the place to visit ?mon and the user ?per. The
duration of the action is defined by the function (visit time

?mon ?per). The conditions for this action to be applicable
are: (1) the user is at ?mon during the whole execution of the
action; (2) ?mon is open during the whole execution of the
action and (3) the time window for the available time of the
user is active. The effects of the action assert that the place
is visited.

The action to perform the activity of eat is defined in Fig-
ure 4, whose parameters are the user ?pers and the restaurant
?loc. The duration of the action is defined by the function
(time for eat ?pers) and specified by the user. To apply
this action, the following conditions must hold: (1) the user is
at ?loc during the whole execution of the action; (2) ?loc is
open during the whole execution of the action; (3) the restau-
rant has a free table and (4) both the time window for the
time to have lunch defined by the user and the available time
are active. The effects of the action assert that the user has
had lunch.

4 SIMULATOR

The objective of the simulator is to execute the plan and mon-
itor that everything works as expected. To accomplish this, we
first need to create the structures to perform the simulation.
We use a timed event simulation, where events occur at par-
ticular times through a timeline, possibly provoking changes
in the world state. During the plan monitoring, we check the
predicates and functions and we visually show the plan trace
in a specially designed GUI. In case a failure that prevents
an action of the plan from being executed is found during the
plan simulation, we activate a replanning mechanism that re-
quires a knowledge-based reformulation of the new planning
scenario. Next, we describe these tasks in more detail.

(:durative-action visit
:parameters (?per - person ?mon - monument)
:duration (= ?duration (visit_time ?mon ?per))
:condition

(and
(at start (be ?per ?mon))
(over all (be ?per ?mon))
(over all (active ?per))
(over all (open ?mon))

:effect
(and

(at end (visited ?per ?mon))))

Figure 3. Action visit of the tourism domain

(:durative-action eat
:parameters (?pers - person ?loc - restaurant)
:duration (= ?duration (eat_time ?pers ?loc))
:condition

(and
(at start (free_table ?loc))
(at start (be ?pers ?loc))
(over all (be ?pers ?loc))
(over all (active ?pers))
(over all (open ?loc))
(over all (time_for_eat ?pers)))

:effect
(and

(at end (eaten ?pers))))

Figure 4. Action eat of the tourism domain

4.1 Timed event simulation: the timeline

A timeline is a simple structure that contains a collection
of unique timed events in chronological order that represents
a sequence of world states and that need to be monitored.
The timeline is generated with the actions of the plan, the
problem information and the live events, as depicted in Fig-
ure 1. A timed event is an event that happens at time t and
contains the following information: (1) the start, over all or
end conditions to be checked at t; (2) the start or end ef-
fects to be applied at t; (3) TILs that represent exogenous
events but that are defined as part of the problem informa-
tion, so they are known at the time of the plan simulation;
and (4) live events, that dynamically appear during the exe-
cuting/monitoring process and so they are unknown a priori.
This way, a timeline encapsulates the information about the
plan (irrespective of it is a sequential or parallel one), TILs
and live events7, and the corresponding world states. The time
scale of the timeline will depend on the granularity of the
plan and the periodic steps we want to use for monitoring
the timed events. In our implementation, live events can be
manually supplied or they can be retrieved from a datasource
that keeps information about the real world.

Given a plan with two actions (move and visit), of duration
20 and 60, respectively, and a live event that indicates the

7 The information about the plan, problem information and
live events is modeled in PDDL format. We used PDDL4J
(https://github.com/pellierd/pddl4j), an open source library
that facilitates the development of JAVA tools for automated
planning based on the PDDL language
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0.00 move person1 hotel museum [20.00]
20.01 visit person1 museum [60.00]

90.00 live event (not (open museum1))

Figure 5. An example of a timeline with five timed events.
Note the closed interval for the at start/end conditions and

effects, and the open interval for the over all conditions

museum is closed (not open) at time 90, the resulting timeline
is shown in Figure 5.

4.2 Plan execution simulation

The simulation of the plan execution requires to set the size
of the execution step that will be applied along the timeline
explained in section 4.1. We can set the step size to the time
granularity of the planner or choose a larger size. The smaller
the size of the execution step, the more frequently access to
external databases (Google APIs) to acquire new information
and update the real-world state. Thus, the execution step size
specified by the user determines the update frequency of the
internal state of the simulator with respect to the real-world
state. If changes frequently occur in the domain, a small ex-
ecution step will result in a more reliable simulation with a
proactive behavior. The simulation state is also updated at
each timed event, checking the conditions of the actions in
the state and applying the effects of the event. Additionally,
the simulator also interacts with the real-world through live
events, which may in turn modify or create new timed events
in the timeline.

The simulation of the plan execution starts at time zero,
with an initial state equal to the real-world state, and the sim-
ulator advances through the timeline in every execution step
(see Figure 5). The simulator checks that conditions are sat-
isfied, the current state matches the expected state, and then
updates the current state accordingly — this whole process is
visually shown in our GUI, described below. More specifically,
every execution step involves two main tasks:

1. processing the live events for changes and update the re-
spective timed events

2. for every unprocessed timed event within the current step:
(1) update the simulation state with the TILs and effects
of the live events; (2) check the conditions of the timed
event to find differences between the current state and the
expected state; and (3) update the state with the effects of
the actions.

If a difference between the current state and the expected
state is found and this difference leads to a situation where the
plan is no longer executable, then a failure has been detected.
In such a case, the GUI informs the user about the cause of

Figure 6. Simulator graphical user interface

the failure: the action that has failed and the conditions that
have been violated. For instance, in the example of Figure 5,
let us suppose there is a live event at time 60 that indicates
the museum will no longer be open from 60 onwards. In this
case, the overall condition ]20.01,80.01[ (open museum) is
violated, which means the visit action cannot be successfully
executed. Then, we need to invoke the replanning module as
described in Section 4.4

4.3 Graphical User Interface

The graphical user interface (GUI) has been designed to pro-
vide information about the internal state of the simulator dur-
ing the whole plan execution simulation and provides mech-
anisms to control the next step of the simulation. The GUI
is specifically designed to offer a smart-city orientation. It in-
cludes six distinguishable GUI parts:

1. Figure 6-section 1 shows the current simulation time
2. Problem objects (Figure 6-section 2): it displays the plan-

ning problem objects along with their types. This static
information will not change over the simulation process.

3. Current state (Figure 6-section 3): This graphical section
contains the PDDL description of the current state, which
can change after an action starts or ends, when a live event
arrives or when a user introduces a manual change (TILs).
Propositions and numeric fluents of the current state can
be separately consulted in two different tabs.

4. Figure 6-section 4 shows the problem goals. In later refine-
ments, we intend to show the goals that are expectedly to
be achieved with the plan under execution.

5. Figure 6-section 5 shows the dynamic list of plan actions,
their start time, the objects involved in the action execution
and the action duration. In addition, actions are shown
with a representative colour: actions currently in execution
are shadowed in yellow, past or already executed actions in
red, and future actions in white.

6. Representative map (Figure 6-section 6): The map depicts
with location icons the relevant places involved in the plan
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Figure 7. Reformulation steps

(places to visit, restaurant, hotel). These location icons
change their colour when the corresponding action is ex-
ecuted. The map also displays distances between locations.

7. Simulation control buttons (Figure 6-section 7): In the mid-
dle of the top menu, the interface displays four buttons to
run the simulator step by step (the step size is defined by
the user), continue with the simulation, stop the simulation
and reset the simulation.

4.4 Reformulating the planning problem

Figure 7 shows the steps of the reformulation procedure.
Step 1: Create the New Initial State. The initial state

will comprise the information known by the simulator at the
time of creating the new problem. This includes the infor-
mation of the current simulation state plus the information
about future TILs; that is currently known information about
some future events. Thereby, the occurrence time of the future
TILs must also be updated.

Step 1.1: Update propositions and fluents. This step
refers to the update of the current state. The propositions
and fluents after the failure are retrieved from the current
world state. However, this might not be an accurate state
since we do not have sensing actions that provide us with a
precise picture of the real world. This may be particularly
problematic when an overall or an at end condition of an
action is violated and the action has at end effects. Let us
take as an example the action (move tourist caro hotel

viveros garden), with an at start effect (at start (not

(be tourist caro hotel))), an at end effect (at end (be

tourist viveros garden)), and an overall condition (over

all (active tourist)). Due to a failure that resulted from
a live event which violated the previously mentioned overall
condition, the tourist is neither in caro hotel because the
at start effect were already executed, nor in viveros garden

because the at end effects were not yet executed due to the
failure. For simplicity, and because of the lack of sensing ac-
tions in our current implementation, when a failure happens

due to an overall or an at end condition violation, we will
calculate the new initial state by simply rolling back the at
start effects of the failing action (if any).

Step 1.2: Update the time of TILs. When the new
problem is reformulated, we invoke the OPTIC planner, which
resets the time of execution and generates a plan starting
from time equal to zero. Consequently, we need to update the
occurrence time of the TILs to the result of its original time
minus the failure time. Let us assume that a failure occurred
at time 100, and that we have the TIL planned at time 235 (at

235 (not (open la paella))), meaning that the restaurant
la paella will close at 235. Therefore, in the new initial state
formulation, its time will be 135 (235 minus 100); and it will
be updated to (at 135 (not (open la paella))).

Step 2: Update preferences. When a failure occurs, we
come across a situation where we can distinguish two types
of preferences or soft goals:

1. Goals that have already been achieved at the time of the
failure by the actions that have been successfully executed
before the failure. These preference goals along with their
penalties will not be included in the new reformulated prob-
lem.

2. Goals that have not been satisfied, and which can in turn
be divided into two sets:

(a) The problem goals that were not included in the original
plan;

(b) The problem goals included in the original plan that have
not been satisfied yet due to the failure.

• For the set of goals in (a), the penalties are kept intact
as they were originally defined in the problem file.

• For the set of goals in (b), we want to keep the plan sta-
bility metric [4] similar to the concept of minimal per-
turbation [11], which is why we increase the penalties
of these goals in the new reformulated problem. Par-
ticularly, we opt for assigning a relatively high prior-
ity to these pending goals (twice as much as the max-
imum penalty among all goals), in order to potentially
enforce these goals in the new plan. We have thus opted
for applying a stability strategy that gives more priority
to goals that were already included in the original plan
than goals that were not. Other strategies such as keep-
ing a higher level of stability with respect to the failed
prior plan can also be adopted. In the case of a tourism
domain, we think that maintaining the original agenda
of the tourist as far as possible is more advisable.

For example, let us consider that the preference
(preference v2 (sometime (visited tourist

central market))) is one of the soft goals in the
set (b); this preference indicates that sometime during
the execution of the plan the tourist wishes to visit
the central market. Assuming that the penalty of this
preference in the original problem file was 270, and that
the highest among all preferences was 300, the new
penalty for preference v2 will be 600.

Finally, two points are worth mentioning. First, we learn
the soft goals that the planner decided to pursue in the
original plan by simply executing the plan without any live
events. Second, the pending hard goals of the original prob-
lem are kept as hard goals in the new problem file.
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Step 3: Generate the new PDDL files. The last step
of the reformulation process consists in generating the new
PDDL files. In principle, the domain file remains unchanged,
unless we wish to necessarily include some particular action in
the new plan. In this case, we would need to encode a dummy
effect that triggers the corresponding action. Otherwise, only
the problem file is generated taking into consideration the
modifications discussed in step 1 and step 2.

In future implementations of the simulator, we will test a
Constraint Programming approach [6] for reformulating the
planning problem, as in [15], and compare the performance
when relying on a scheduler rather than a planner.

5 CASES OF STUDY

The aim of this section is to show the behaviour of our
simulation system with a representative example. We have a
tourist who wishes to make a one-day tour in the city of Va-
lencia. Initially, the system retrieves a set of recommended
places according to the user profile (table 1, column 1) and
a set of restaurants. The list of recommended places is cal-
culated by a Recommender System through the user profile.
This list of places comes along with a recommendation value
(Table 1, column RV) according to the interest degree of the
user in the particular place. This value will be used by the
planning module to obtain a plan that fits the user’s likes.

The tour (plan) for the user calculated by the planner is
shown in the left snapshot of Figure 8. The visits included in
the plan are marked with a red location icon in the snapshot.
The tour starts from the origin location of the tourist, i.e.,
the hotel in which the user is staying at (green location icon),
and includes six visits to monuments (red icons) and one stop
at a restaurant (orange icon).

The simulator starts the plan execution simulation with
the information provided above. Let us assume that at time
1:55 pm, a live event is received, (at 235 (not (free table

el celler del tossal))), indicating that the restaurant cho-
sen by the planner, el celler del tossal, is completely full
and has no available table. At the time the live event ar-
rives, the tourist has already visited the first three monuments
(1. Viveros garden; 2. Serrano towers; 3. Quart towers), and
he is currently at the location of the restaurant el celler del
tossal. When the user learns the restaurant is fully booked, the
simulator detects a failure because the action (eat tourist

el celler del tossal) is not executable. Then, the simula-
tor reformulates a new planning problem in order to obtain a
plan that solves the failure:

1. Initial state: the current location of the tourist is the point
at which the previous plan failed; i.e., the restaurant el
celler del tossal. Since the new initial state is initialized to
time zero (tini = 0), the simulator updates the time of the
TILs in the current state, namely, the opening and closing
time of places, the time slot for having lunch and the TIL
(at tavailable (not (active tourist))), where tavailable
is set to the new time the tourist must get back to the hotel
from tini = 0. Additionally, the fluent (total moving time

tourist) is updated with the total time the tourist has
spent in moves around the city.

2. Goals: the places that have already been visited (the first
three monuments) are removed from the goal list. The new

set of goals includes two lists: (a) the pending goals of the
failed plan; that is, have lunch (4. have lunch) and the
three remaining monuments that have not been yet visited
by the user (5. Lonja, 6. Central market, 7. Town Hall);
plus (b) the goals of the original problem goals that were
not included in the first plan.

Regarding penalties of the goals, the list of goals in (b)
are included in the new planning problem with their original
recommended values (see the non-bold values RV’ in column
2 of Table 1). As for the pending goals of (a), the penalty of
these goals is increased with respect to their penalty in the
first plan (see the bold values RV’ in column 2 of Table 1 for
the three pending monuments) accordingly to the stability
concept explained in section 4.4.

The simulator invokes OPTIC and obtains a new plan, dis-
played in the middle snapshot of Figure 8. A few things must
be noted in this new plan:

1. OPTIC suggests a new restaurant (orange icon labeled with
number 4) which is rather far away from the prior restau-
rant. The reason is that we have only included in the plan-
ning problem the 10-top restaurants in Valencia suggested
by Trip Advisor, and the closest one to the prior restaurant
is the one shown in the second map.

2. The places included in the new plan are marked with green
location icons as well as the paths between places. We can
observe that the new plan maintains the visit to Town Hall
(now represented with the green icon numbered as 5) and to
the Lonja (now indicated with the green icon with number
6). However, the visit to Central Market has been discarded
in this new plan. This is likely due to the longer distance
to the new restaurant.

The simulation continues. Let us assume that when the
tourist is visiting the Town Hall, a new live event announc-
ing the building closes before the scheduled closing time ((at
140 (not (open town hall)))) is received, the current time
being equal to 140 . A new failure is detected in the middle of
the execution of (visit tourist town hall) due to a viola-
tion of an overall condition. As we explained in section 4.4,
the simulator applies a rollback process to obtain the current
state before the last visit action but preserving the simulation
time. Then, in the new reformulated problem, the user is lo-
cated at the Town Hall, he has not visited the Town Hall and
the live event causes the proposition (open town hall) to be
removed from the initial state. Note that the goal (visited
tourist town hall) will be included as a goal in the new
problem to maintain the plan stability but since the Town
Hall is no longer open for visits, the planner will not include
this goal in the new plan. The penalties of the goals for this
third problem are shown in column 3 of Table 1.

The third plan (right snapshot of Figure 8), shown in light
blue colour, retrieves the visit to the Central market that
was eliminated from the second plan. The new plan suggests
visiting La Lonja (5. la Lonja) and then the Central market
(6. Central market). Finally, the user returns to the hotel.

6 CONCLUSIONS AND FURTHER
WORK

We have presented a context-aware smart tourism simulator
that keeps track of the execution of a tourist agenda. The sim-
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Figure 8. The three simulated plans. Icons in PLAN1: (0) Caro hotel, (1)Viveros Garden, (2) Serrano towers, (3) Quart towers, (4) El
Celler del Tossal (RESTAURANT), (5)Lonja, (6) Central market, (7) Town hall. Icons in PLAN2: 1,2,3 are the same as PLAN1, (4) the

Pederniz (RESTAURANT), (5) Town hall, (6)Lonja. Icons in PLAN3: 1,2,3,4 are the same as PLAN2, (5) Lonja, (6) Central market

PLACES RV RV’ RV”
Cathedral 280 280 280
Central market 270 600 600
Lonja 290 600 600
Serrano towers 250 — —
City of arts and sciences 280 280 280
Oceanografic 300 300 300
Bioparc 210 210 210
Quart towers 200 — —
Viveros garden 250 — —
Town hall 200 600 600

Table 1. Recommended places

ulator periodically updates its internal state with real-world
information and receives sensible environmental changes in
the form of live events. Events are processed in the context
of the plan and in case of failure, a new planning problem is
formulated. This involves creating the new initial state and
updating the time of timed events. In the case of study, we
have shown how the user can track the plan execution through
a GUI that automatically displays the plan under execution.

As for future work, we intend to endow the system with
a pro-active behaviour, analyzing the incoming of live events
that entail a future failure in the plan.

REFERENCES

[1] J. Benton, A. J. Coles, and A.I. Coles, ‘Temporal planning
with preferences and time-dependent continuous costs’, in
ICAPS, (2012).

[2] D. Buhalis and A. Amaranggana, ‘Smart tourism destinations
enhancing tourism experience through personalisation of ser-
vices’, in Proc. Int. Confernece on Information and Commu-
nication Technologies in Tourism, pp. 553–564, (2013).

[3] S. Edelkamp and J. Hoffmann, ‘PDDL2.2: The language for
the classical part of the 4th International Planning Competi-
tion’, IPC 04, (2004).

[4] M. Fox, A. Gerevini, D. Long, and I. Serina, ‘Plan stability:
Replanning versus plan repair’, in ICAPS, volume 6, pp. 212–
221, (2006).

[5] I. Garcia, L. Sebastia, E. Onaindia, and C. Guzman, ‘E-
Tourism: a tourist recommendation and planning applica-
tion’, International Journal on Artificial Intelligence Tools,
18(5), 717–738, (2009).

[6] A. Garrido, M. Arangu, and Eva. Onaindia, ‘A constraint
programming formulation for planning: from plan scheduling
to plan generation’, Journal of Scheduling, 12(3), 227–256,
(2009).

[7] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopou-
los, ‘Deterministic planning in the 5th International Plan-
ning Competition: PDDL3 and experimental evaluation of the
planners’, Artificial Intelligence, 173(5-6), 619–668, (2009).

[8] U. Gretzel, M. Sigala, Z. Xiang, and C. Koo, ‘Smart tourism:
foundations and developments’, Electronic Markets, 25(3),
179–188, (2015).

[9] R. Howey, D. Long, and M. Fox, ‘VAL: automatic plan vali-
dation, continuous effects and mixed initiative planning using
PDDL’, in 16th IEEE ICTAI, pp. 294–301, (2004).
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Extending naive Bayes with precision-tunable feature
variables for resource-efficient sensor fusion

Laura Isabel Galindez Olascoaga1 and Wannes Meert2 and Herman Bruyninckx3 and Marian Verhelst1

Abstract. Resource-constrained ubiquitous sensing devices suf-
fer from the fundamental conflict between their limited hardware
resources and the desire to continuously process all incoming sen-
sory data. The data’s representation quality has an immediate im-
pact on both aspects. This paper strives to enable resource-aware and
resource-tunable inference systems, which are capable of operating
in various trade-off points between inference accuracy and resource
usage. We present an extension to naive Bayes that is capable of dy-
namically tuning feature precision in function of incoming data qual-
ity, difficulty of the task and resource availability. We also develop
the heuristics that optimize this tunability. We demonstrate how this
enables much finer granularity in the resource versus inference accu-
racy trade-off space, resulting in significant resource efficiency im-
provements in embedded sensor fusion tasks.

1 INTRODUCTION

The Internet of Things (IoT) paradigm is on the rise, promising an
important contribution to tackling societal challenges through im-
proved distributed sensing capabilities. This paradigm is expected to
significantly impact application scenarios like e-health and domotics,
which already benefit from the widespread availability of embed-
ded sensing devices (i.e., smartphones, activity trackers and service
robots) that can reliably gather and process a massive amount of data.
The main enabling factor of this vision is the ability to seamlessly in-
tegrate several technological solutions which motivates the desire to
run complex inference tasks in-situ and in a distributed manner. Yet,
smart embedded devices’ processing abilities are held back by their
limited resource availability, both in terms of energetic as well as
computational resources [2]. This creates a fundamental conflict be-
tween the desire to fuse information from more and more always-on
sensors in embedded devices, and the inability of these embedded
devices to process all incoming data continuously and at high preci-
sion. This conflict is currently circumvented by running most sensor
fusion and sensory inference tasks in the cloud [1, 4]. Yet, this has
important consequences towards the system’s latency and the user’s
privacy [5]. Moreover, it does not solve the excessive power con-
sumption spent by the always-on sensors and the wireless link [8].

Efficiently running inference tasks on the devices themselves calls
for awareness of the real-time embedded platform’s resource limita-
tions. This is in sharp contrast with most state-of-the-art inference ap-
proaches, which focus on maximizing information gain and inference

1 MICAS – Department of Electrical engineering, KU Leuven,
email: Laura.Galindez@esat.kuleuven.be

2 DTAI – Department of Computer Science, KU Leuven
3 PMA – Department of Mechanical Engineering, KU Leuven

accuracy 4 without taking the actual hardware footprint of online in-
ference into account. To facilitate effective sensory fusion inference
tasks inside embedded devices, this paper strives to enable resource-
aware and resource-tunable inference systems, which are capable
of operating in various trade-off points between inference accuracy
and resource usage. Such performance-tunability can be realized by
dynamically reallocating resources across sensory features in accor-
dance to the task relevance and complexity. Recent techniques, such
as feature-cost aware inference [4, 7], perform hardware-cost aware
feature selection to minimize the overall resource cost of feature
extraction. Additionally to feature-cost one can also adapt known
machine learning models such that they are efficiently run on em-
bedded systems by preferring integer operators [25], considering the
trade-off between number of operations and accuracy [19], reducing
the precision [29] and the value range [9] of the features , or de-
composing the model and distributively running the inference task
on different processing units [14, 16, 10]. In addition, recent efforts
have attempted to integrate such machine learning models and tech-
niques under embedded hardware efficient frameworks [14]. These
optimization techniques result in a fixed resource usage versus per-
formance operating trade-off and, as a result, fail to exploit all the re-
source saving opportunities that the hardware platform can provide.
To overcome these limitations, this paper introduces the following
innovations:

1. Feature precision-tunability: Instead of only selecting or deselect-
ing a sensory feature, embedded platforms can also tune the pre-
cision of sensors and sensory feature extraction (i.e. by changing
their resolution or number of bits) in return for hardware resource
savings through techniques such as approximate computing and
approximate sensing. This allows them to dynamically trade-off
feature quality for resource efficiency. In this paper, we will extend
the naive Bayes fusion model to such feature-precision tunability.

2. Run-time accuracy-resource-awareness: Instead of offline feature
or precision selection, a dynamic approach should allow run-time
accuracy-resource tunability. This requires the creation of a sin-
gle fusion model, capturing all feature precision-tunability states,
which can be explored and traversed at run-time. The resulting
model enables run-time adaptations of feature precision in func-
tion of incoming data quality, in function of the difficulty of the
inference task, or in function of the instantaneous resource avail-
ability in the embedded system.

We present an extension to naive Bayes that is capable of dynamic
feature precision tunability, as well as heuristics to optimize this tun-
ability. We demonstrate how this enables much finer granularity in

4 In this paper we refer to inference accuracy as the percentage of correctly
predicted queries from a test set.
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the resource versus inference accuracy trade-off space, resulting in
significant resource efficiency improvements in embedded sensor fu-
sion tasks. These performance tuning capabilities are of up most
relevance in data-dense and resource-constricted environments like
the IoT. Therefore, we demonstrate the functionality of our proposed
techniques in sensor fusion datasets related to applications relevant
to this paradigm.

The paper is structured as follows. In Section 2 we give a the-
oretical background of naive Bayes classifiers and Bayesian Net-
works (BN) and we explain how precision tuning enables resource-
efficiency in the current context. Section 3 gives the details of the
proposed feature precision-tunable BN and explains how parameter
learning and inference are performed in it. In Section 4 we propose a
heuristic that uses the proposed BN to select optimal operating points
in the resource versus inference accuracy space and we evaluate the
trade-off it achieves by performing experiments on four data corpora
in Section 5. Finally, we discuss the results as well as our contribu-
tions and future work in Section 6.

2 BACKGROUND

2.1 Bayesian Networks

Bayesian Networks (BN) are directed acyclic graphs that compactly
encode a joint probability distribution over a set of random vari-
ables [24]. Consider a set of random variables U = {F1, . . . , Fn}
where each feature Fi may take values from a finite set Val(Fi). A
Bayesian Network for a set of random variables U is formally de-
fined as the pair B =< G,Θ >. The first component G represents
the graph which encodes conditional independence assumptions. The
nodes represent variables Fi and its arcs represent the probabilis-
tic dependencies between variables. The second component Θ repre-
sents the set of conditional probability distributions Pr(Fi|ΠFi) that
quantify the network where ΠFi denotes the parents of Fi.

The joint probability distribution defined by the network B is
given by

Pr(F1, ..., Fn) =
n∏

i=1

Pr(Fi|ΠFi). (1)

Inference in BNs, Pr(Q|E = e), can be performed by assign-
ing values e to variables E that are observed and by summing out
variables U\(Q ∪E) that are not part of the query Q.

2.2 Bayesian Network Classifiers

Classification is the task of assigning a class label C to instances de-
scribed by a set of features F1, ..., Fn. Such a task can be tackled by
a Bayesian network where one of the random variables, C, is consid-
ered the class and the other random variables, F1, . . . , Fn, represent
the features. The task is now to find the most likely value for the class
variable C:

c = arg max
c

Pr(C = c|F1 = f1, . . . , Fn = fn), (2)

where c is the current class and fi is the observed value for feature
Fi.

A widely used type of Bayesian classifier is the naive Bayes clas-
sifier [12]. The main assumption is that every feature is independent
of the other features given that the class is known. The graphical

structure of the naive Bayes network is shown in Figure 1. This as-
sumption allows for efficient learning and inference as it simplifies
Equation 2 to

c = max
c

Pr(F1 = f1|C = c) . . .Pr(Fn = fn|C = c) Pr(C = c)

by applying the rule of Bayes and conditional independence. De-
spite the independence assumption, naive Bayes classifiers perform
surprisingly good. This makes them one of the most effective and
efficient inductive learning algorithms [33, 6].

𝐶

𝐹# 𝐹$ 𝐹%

Figure 1. Graphical representation of the naive Bayes classifier

2.3 Resource awareness and precision tuning
Embedded hardware platforms have to operate under very scarce re-
sources. First and foremost, their miniaturization results in very lim-
ited battery capabilities which motivates the quest for high energy
efficient designs and methodologies. Moreover, due to size, cooling
and cost restrictions, the computational bandwidth of these devices is
extremely scarce. This has sparked an enormous amount of research
into adaptive hardware over the last decade. Under this paradigm,
resource consumption can be tuned at run-time to be lower at the
expense of reduced quality sensor streams or computations. This dy-
namic trade-off is achievable in several ways:

1. Noisy sensors: The amount of noise present in sensory measure-
ment strongly depends on the amount of energy spent in the sensor
front-end (in its filters, amplifiers, etc). By tolerating more statis-
tical noise on the measurement result, energy can be saved [15, 3].

2. Stochastic computing: The resulting accuracy of digital compu-
tations can be traded off against processing resource usage and
energy consumption by using stochastic or approximate comput-
ing techniques. In stochastic computing, for example, numbers are
represented by bit-streams that can be processed by very simple
circuits such as standard logic gate arrays. These implementations
allow a limited amount of errors (stochastic noise) in the digital
embedded calculations in return for a more efficient implementa-
tion [21].

3. Reduced precision sensing and computing: Instead of applying
aforementioned stochastic techniques to dynamically trade fea-
ture quality for resource savings, significant resource savings are
also achievable by simply limiting the amount of bits with which
sensor values are sampled and digitally processed for feature ex-
traction. Standard hardware platforms digitize sensory values at
fixed precision and typically process them with 16-bit resolution.
Recent works present the development precision-tunable digitiz-
ers, as well as digital processing platforms capable of dynamically
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adjusting the precision with which internal computations are per-
formed [23, 20].

Within this paper, we focus on enabling the feature quality versus
resource trade-off through the latter technique: computations with
variable precision features. The results are transferable to the dis-
cussed alternatives, which is left for future work. Under variable pre-
cision computations, the extracted features U = {F1, ..., Fn} are
each computed and represented by a tunable amount of bits. The
number of bits representing the feature, directly impacts the set of
values a feature Fi can take on and will be referred to as Fi,m with
m the number of bits. More specifically, when using a m-bit repre-
sentation, the feature can take |Val(Fi,m)| = 2m possible values.

As we are interested in studying resource efficiency in sensory ap-
plications we construct these m-bit representations by following a
signal processing quantization approach [27]. Mapping of the origi-
nal feature to an m-bit representation is based on comparisons with
decision levels tk. If the feature value is between tk and tk+1 it gets
mapped to a quantization level lk, where the number of levels must
be equal to 2m. In this paper, the decision levels tk are derived from
the feature value range and the set of lower precision decision levels
is a subset of the higher precision decision levels (see also Section 3).

State-of-the-art implementations show that under such computa-
tional precision tuning, the resource cost (here expressed in terms of
energy per computational operation) scales more than quadratically
with the computational precision, expressed in terms of number of
bits [22]. In this paper, we will assume that the feature cost (denoted
Ti,m) of feature Fi computed with precision m-bits is equal to

Ti,m = αi ·m2. (3)

where αi is the feature-dependent cost of the nominal precision fea-
ture.

3 VARIABLE FEATURE PRECISION NAIVE
BAYES

Tuning feature precision enables a wide range of resource depen-
dent operation points.We make the probabilistic relations required
by classification tasks explicit in a Bayesian Network (BN) where
features can be observed at different precision levels.

3.1 Model Structure

The proposed BN represents a naive Bayes classifier that has multiple
versions of the same feature in each leaf, as shown by Figure 2.

Feature versions with the highest precision (Fi,m) are directly
linked to the class variable C. There are no direct links between
lower precision feature versions Fi \ Fi,m and the class variable
since the relation between these versions is deterministic. The pro-
posed structure encodes the following joint probability distribution
over the multiple feature version sets Fi = {Fi,m, . . . , Fi,0} and the
class variable C

Pr(C,F1,m, ..., Fn,0) =
n∏

i=1

m−1∏

b=0

Pr(Fi,b|Fi,b+1) · Pr(Fi,m|C) · Pr(C). (4)

	𝐶
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Figure 2. Naive Bayes model extended with multiple feature quality
versions

3.2 Parameter Learning

We assume that the studied features were generated by a continu-
ous distribution [24], therefore, we model the conditional probabili-
ties between features of highest precision and classes Pr(Fi,m|C)
as Gaussian distributions [18]. Even though the model includes
n × (m + 1) parameters θ, only the conditional probabilities be-
tween features of highest precision and classes Pr(Fi,m|C), must be
trained since the conditional probabilities between lower precision
features Pr(Fi,b|Fi,b+1) are deterministic. Once we have knowl-
edge of the decision levels tk that generated the lower precision fea-
tures, we are able to systematically add them to the tails of the pro-
posed naive Bayes structure.

3.3 Inference

At any given time, every feature Fi is observed at only one
of the precision options bi depending on the current resource
consumption desires and constraints. Given observation o =
{f1,b1 , f2,b2 , ..., fn,bn}, classification is performed by estimating
the class posterior probability given by

Pr(C|o) ∼
n∏

i=1

Pr(fi, bi|C) · Pr(C). (5)

This implies that, for every observed feature, its lower precision
versions are not observed, while their higher precision versions are
marginalized.

Consider the example depicted in Figure 3 which may correspond
to a robot navigation application, as discussed in Section 5.2. Sup-
pose we obtain sensor readings at 8 bit, 4 bit and 2 bit for sensors
S1, S2 and S3, respectively and we decide to turn off sensor S4.
Here, we can estimate the class posterior probability (which can be a
location, for example) with the following equation
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Pr(C|S1,8b, S2,4b, S3,2b) ∼
Pr(S1,8b|C) ·

∑

S2,8b

Pr(S2,4b|S2,8b)Pr(S2,8b|C) ·

∑

S3,4b

∑

S3,8b

Pr(S3,2b|S3,4b) · Pr(S3,4b|S3,8b) · Pr(S3,8b|C) ·

Pr(C), (6)

and predict the class c ∈ C with the highest posterior.

	𝑪
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Figure 3. Example of a four feature application where each of them is
observed at a different precision (circles with bold edges). Features with
higher precision than the observed are marginalized (circles with black

edges) and versions with lower precision are not observed (circles with gray
edges). Note that feature 4 is observed with ”0 bit” precision, which is

equivalent to pruning it.

4 ACCURACY-RESOURCE TUNABILITY
The proposed model enables multiple resource and accuracy de-
pendent operating points. In this paper we analyze the trade-off in-
duced by the available feature combination choices and we propose a
methodology to find the optimal operating points given the system’s
resource constraints.

We propose an accuracy-resource sensitive algorithm that selects
the optimal feature precision across the accuracy-resource usage
trade-off space. At each iteration, we select the feature set that op-
timizes a cost function CF , which is defined according to the de-
sired application and the constraints thereto [13, 17]. In this paper
we maximize the cost function given by

CF = log

(
∆resource

max(resource)

)
− log(∆accuracy), (7)

where the term ∆ refers to the predicted state difference between
time k and time k+1 as will be detailed in Algorithm 1. The greedy

neighborhood search in our heuristic ensures resource reduction, and
the cost function further motivates it by explicitly trading off the two
terms.

Two of this algorithm’s aspects distinguish it from conventional
state-of-the-art feature selection techniques [7, 28, 31]: 1) We merge
accuracy gain and resource usage in a joint cost optimization, hence
taking hardware implementation aspects into account from the algo-
rithmic level. 2) In contrast to cost-aware feature selection techniques
which decide whether to use a feature or not, we enable the selection
of a variety of feature precision combinations.

Algorithm 1 details the method. We initialize the selected fea-
ture set to the highest precision feature combination Uselected =
{F1,m, ..., Fn,m} . At each iteration, we perform a greedy neigh-
borhood search over n feature combination candidates. In each can-
didate i, the precision of feature Fi is dropped one level with re-
spect to the current precision. We evaluate the classification accu-
racy and resource usage of each candidate and select the one that
maximizes the cost function CF . The procedure is repeated un-
til the feature combination with the lowest precision is selected
(Uselected = {F1,0, ..., Fn,0}). Note that the algorithm is able to per-
form feature pruning if a ”null precision” leaf is added to the Naive
Bayes model (see Figure 3 for an example).

Classification accuracy is computed by estimating the posterior
probability Pr(C|k) of every instance k from a testing data-set Utest

and comparing the prediction to to the instance’s label (see Algo-
rithm 2).

5 EXPERIMENTS
We evaluate the resource-accuracy trade-off achieved by our pro-
posal with one synthetic dataset and three data corpora from two real
applications relevant to the IoT paradigm.

5.1 Synthetic Data
This dataset consists of 2000 points sampled from 4 Gaussians

N (mi,σi), i = {1, 2, 3, 4}, where m1 =

(−1.66
−0.33
−0.33
−2.00

)
, m2 =

(
1.00
0.5
1.00
1.00

)
, m3 =

(
3.33
2.00
0.5
0.5

)
, m4 =

(−1.66
−1.43
−0.66
−3.33

)
, σ1 =

(
0.80
1.00
1.00
1.00

)
, σ2 =

(
0.70
1.00
1.00
1.00

)
, σ3 =

(
1.00
1.00
1.00
1.00

)
and σ4 =

(
1.00
1.00
1.00
1.00

)
. The Gaussians are de-

fined to have different degrees of overlap in every dimension and
have therefore a varying miss-classification risk for different feature
combinations. We quantize the data-set at 5, 3, 2 and 1 bits and ran-
domly divide it into a training and a testing set (used for model train-
ing and accuracy estimation, respectively). We compute the resource
usage with Equation 3, as included in Table 1 . To assign the vari-
able αi, we assume that features that are less likely to cause miss-
classification would be more expensive to extract and compute in a
real application. Thus giving a higher value to them. We add a ”null
precision” leaf, to enable feature pruning as shown in the example
depicted by Figure 3.

Figure 4 shows the resource vs accuracy trade-off curve achieved
by the proposed algorithm and achieved by a typical resource-aware
heuristic 5 in red and blue, respectively. The gray point cloud repre-
sents all the possible accuracy-resource trade-off operational points
to select from. The proposed heuristic has a richer feature combina-
tion space to select from, which prevents accuracy degradation for a

5 The typical resource-aware heuristic considers only features at the highest
precision Fi,m and decides whether to prune them by maximizing CF .
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Algorithm 1: Feature precision selection algorithm for accuracy-
resource tradeoff

1 Feature precision selection (Utest, Ti,m , Θ, C, CF );
Input : Utest, Ti,m , Θ, C, CF
Output: Selected feature set Uselectedk = {F1,b1 , ..., Fn,bn}

2 k=0;
/* Initialize with the highest precision feature set */

3 Uselectedk = {F1,m, ..., Fn,m}
4 accuracyk ← AccuracyEvaluation(Θ,C, Uselectedk )
5 resourcek ← Ti,bi ∀ Fi,bi ∈ Uselectedk

/* while the lowest feature precision has not been selected */
6 while Uselectedk 6= {F1,0, ..., Fn,0}
7 do
8 for i = 1 to n // For each candidate combination
9 do

/* drop Fi’s precision one level */
10 Ucandidatei ← Uselectedk \ Fi,bi ∨ {Fi,bi−1}
11 accuracycandidatei ← AccuracyEvaluation(Θ, C,

Ucandidatei );
12 resourcecandidatei ← Ti,bcanditatei

∀
Fi,bcandidatei

∈ Ucandidatei ;
13 ∆accuracycandidatei =

accuracyk − accuracycandidatei ;
14 ∆resourcecandidatei =

resourcek − resourcecandidatei ;
15 end
16 update k=k+1;
17 Uselectedk ←

argmin
U∈Ucandidate

CF(∆accuracycandidate,∆resourcecandidate);

18 update accuracyk ← AccuracyEvaluation(Θ,C,
Uselectedk )

19 update resourcek ← Ti,bi ∀ Fi,bi ∈ Uselectedk

Return: Uselectedk

20 end

Algorithm 2: Classification accuracy evaluation algorithm

1 AccuracyEvaluation (Θ,C,U);
Input : Θ,C,U
Output: accuracy

2 correct = 0;
3 for k = 1 to N // With N the number of instances in the testing set
4 do

/* For each class we approximate the posterior probability given the
instance currently analyzed */

5 Pr(C|k)← Pr(k|C) · Pr(C)
/* We predict the class with the highest posterior probability */

6 cmaxk = argmax
c∈C

Pr(C|k)

7 if cmaxk == ck then correct=correct+1;
8 end
9 update accuracy ← correct÷N ;

Return: accuracy

resource usage scale-down of up to 20 times. The non-tunable pre-
cision heuristic has comparatively very few feature combination op-
tions to select from, which leads, in contrast, to a maximum resource
scaling of approximately 2 times without accuracy degradation.

0 50 100 150 200 250 300 350 400
Resource consumption

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
 p

er
ce

n
ta

g
e

Accuracy-resource tradeoff on the synthetic dataset

Precision-tunable resource-aware selection
Resource-aware selection

Figure 4. Algorithm performance comparison on the synthetic dataset.

5.2 Real Datasests

We analyze three sensor based applications that benefit from feature
precision tuning. The first is a robot navigation task. The second and
third dataset are activity recognition tasks.

Wall-Following Robot Navigation We analyze a public domain
dataset that was collected as a mobile robot navigates through a room
following the wall in a clockwise direction, for 4 rounds, using 4
ultrasound sensors positioned on the front, left, right and back of its
body [11]. Four states can be identified from the sensor readings:
Move-Forward, Slight-Right-Turn, Sharp-Right-Turn or Slight-Left-
Turn. The data-set has a precision of 8 bits and we further quantize it
at 5, 2 and 1 bits. We assume the four sensors have the same hardware
properties, so we set the variable αi equal to one for all of them
and use Equation 3 to generate the resources for the experiments, as
shown in Table 1. Furthermore, we add a random number between 0
and 5 to each cost to simulate non ideal performance conditions.

Figure 5 shows the cost-accuracy trade-off achieved by the pro-
posed precision-tunable heuristic and the trade-off achieved by a cost
aware method in red and blue, respectively. The gray crosses repre-
sent all the possible operation points to choose from. Both heuris-
tics display negligible accuracy degradation when their resource con-
sumption is scaled down a factor 2 (from 400 to 200). The slight ac-
curacy gain achieved by the non-tunable heuristic can be due to the
discretization related improvements discussed in [32] and [29] . For a
factor 4 resource scaling (from 400 to 100) the non-tunable heuristic
has already pruned 3 out of its four features which causes the accu-
racy to degrade from 90% to 75%. The precision-tunable heuristic
keeps observing all features, yet reduces their precision which also
produces a factor 4 resource consumption downscale but no accuracy
degradation.

USC-HAD This dataset was designed as a benchmark for Human
Activity Detection (HAD) algorithm comparisons [34]. It was col-
lected by an Inertial Measurement Unit (IMU) placed in the subjects’
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Figure 5. Performance comparison in the robot navigation application

hip consisting of a 3-axis accelerometer and a 3-axis gyroscope and
it contains measurements for the identification of 12 different low-
level daily activities. In accordance to previously performed Activity
Recognition analyses [7, 26], the activities that can be best classified
with naive Bayes and that are therefore used in this experiment are
Walking-forward, Running-Forward, Sitting and Sleeping.

We tuned the dataset’s precision from the original 8 bits to 5,4,3,2
and 1 bits. For resource assignment, we consider that the power con-
sumption of a gyroscope can be up to 10 times that of an accelerom-
eter [34] so we set the corresponding αi variables to 1 and 10, re-
spectively, and use Equation 3 to calculate the resource consumption.
Like in the previous experiment, we add a random number between
0 and 5 to simulate non ideal behavior. The resource consumption
assignments for this experiment are detailed in Table 1. Again, we
enable feature pruning through the addition of the 0 bit leaf to he
model.

Figure 6 shows the cost-accuracy trade-off curves achieved by the
precision-tunable and the cost-aware only heuristics in red and blue,
respectively. The possible operating points are represented by gray
crosses. For a resource consumption downscale of 2.5 (from 2130
to 845), the non-precision tunable heuristic suffers from an accuracy
degradation of 6% (88% to 82%), while there is no accuracy reduc-
tion with the precision-tunable method. Although the 6% accuracy
loss/2x cost saving of the non-tunable strategy could be acceptable
in some situations, it is worth noting the limitations imposed by the
available number of operating points. In addition to the 2.5x re-
source downscale, only a 30x reduction (from 2130 to 65) is pos-
sible at the expense of accuracy degrading from 88% to 61%. The
precision-tunable strategy has, in contrast, the possibility to choose
from approximately 26 operation points, with up to 6x resource sav-
ings before accuracy is lower than 80%.

HAR-RIO In this dataset, 5 activities (Sitting-Down, Standing-
Up, Standing, Walking, and Sitting) can be identified from 8 hours
of recordings performed by 4 accelerometers positioned in the waist,
left thigh, right ankle and right arm of 4 healthy subjects [30]. The
accelerometers are tri-axial which results in a total number of 12
features; {xi, yi, zi}, i = {1, 2, 3, 4}. For the experiments in this
paper, 9 of those features were selected in accordance to previ-
ously performed classification algorithm benchmarking [30], namely
{y1, z1, x2, y2, z2, x3, y3, z4, y4, z4}. The dataset’s precision is 8
bits, we quantize it at 4,3,2,1 bits and we add the ”null precision”
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Figure 6. Trade-off comparison on the Human Activity Detection dataset
with gyroscope and accelerometer.

leaf that enables feature pruning.The resource parameters used in this
experiment are listed in 1.

Figure 7 shows the results from this experiment with the same
color coding as previous. The precision-tunable approach’s perfor-
mance is superior, as it achieves up to 12x resource savings (from
620 to 50) for a maximum accuracy degradation of 4% (from 80% to
76%). The non-tunable strategy displays accuracy losses of less than
5% up to a resource consumption scaling of 3x (620 to 200). For any
resource down scaling larger than that, the accuracy degrades more
than 10%.
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Figure 7. Trade-off comparison on the Human Activity Recognition
dataset with accelerometers.

6 CONCLUSIONS AND DISCUSSION
Our main contribution in this paper was to enable efficient embedded
sensor fusion through a resource-aware naive Bayes model, capable
of exploiting variable precision features. By encapsulating various
precision features within the model structure, we enable the possibil-
ity to dynamically tune resource consumption and inference accuracy
according to the circumstances and available resources. We propose
an algorithm that finds optimal operating points by reducing resource
consumption and minimizing accuracy degradation.
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Table 1. Feature resources used for experiments

m bits feature precision

Dataset α 10 8 5 4 3 2 1

Synthetic
Feat. 1 1 100 - 25 - 9 4 1
Feat. 2 0.7 70 - 17.5 - 6.3 2.8 0.7
Feat. 3 0.9 90 - 22.5 - 8.1 3.6 0.9
Feat. 4 0.8 80 - 20 - 7.2 3.2 0.8

Robot 1 100 - 25 - - 4 1

USC-HAD
Accel. 1 - 64 25 16 9 4 1
Gyro. 10 - 640 250 160 90 40 10

HAR-RIO 1 - 64 25 16 9 4 1

We have compared our scheme with a state-of-the-art resource-
aware feature selection technique and we conclude that overall our
scheme has better cost saving capabilities due to the rich variety of
operational points it can choose from. We tested one artificial and
three public domain data corpora with the proposed methodology.
Accuracy degradation was prevented while achieving resource usage
scalings of 20x for the synthetic dataset, 4x for the Robot Naviga-
tion application, 6x for the Human Activity Detection application
with accelerometers and gyroscopes, and 12x for the Human Ac-
tivity Recognition application with accelerometers. The non-tunable
precision heuristic achieved, in comparison, a resource scaling of 2x
for the synthetic dataset, 2x for the Robot Navigation application,
2.5x for the Human Activity Detection application with accelerom-
eters and gyroscopes, and 3x for the Human Activity Recognition
application with accelerometers.

There are many ways in which feature quality tuning can improve
hardware resource efficiency. We proved this concept by tuning fea-
ture precision but the next step in our work will be to extend the
proposed method to other quality tuning paradigms beyond preci-
sion tunability such as varying levels of noisy sensing. This will
potentially require the modification of the proposed multiple-level
Bayesian Network as the relationship between nodes of different
qualities will not be deterministic anymore. Furthermore, we will
explore more complex structures for applications that are not mod-
eled with sufficient accuracy under the naive Bayes independence
assumption.

The long term goal is to integrate the optimal feature precision se-
lection scheme in an embedded sensory application, where the sys-
tem dynamically and autonomously selects features and their pre-
cision given the current state of the hardware devices with limited
computational overhead. This scheme could enable the seamless in-
tegration of sensory based algorithms into smart environments which
is one of the elements envisioned for the IoT.
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A Distributed Event Calculus for Event Recognition
Alexandros Mavrommatis12, Alexander Artikis32, Anastasios Skarlatidis2 and Georgios Paliouras2

Abstract. Events provide a fundamental abstraction for represent-
ing time-evolving information. Complex event recognition focuses
on tracking and analysing streams of events, in order to detect pat-
terns of special significance. The event streams may originate from
various types of sensor, such as cameras and GPS sensors. Further-
more, the stream velocity and volume pose significant challenges
to event processing systems. We propose dRTEC, an event recog-
nition system that employs the Event Calculus formalism and oper-
ates in multiple processing threads. We evaluate dRTEC using two
real-world applications and show that it is capable of real-time and
scalable event recognition.

1 Introduction

Today’s organisations need to act upon Big Data streams in or-
der to support their resource management, capitalise on opportu-
nities and detect threats. Towards this, event recognition systems
have been particularly helpful, as they support the detection of com-
plex events (CE)s of special significance, given streams of ‘simple,
derived events’ (SDE)s arriving from various types of sensor [9].
A CE is a collection of events (SDEs and/or CEs) that satisfy a
(spatio-)temporal pattern. In the maritime domain, for example,
event recognition systems have been used to make sense of position
streams emitted from thousands of vessels, in order to detect, in real-
time, suspicious and illegal activity that may have dire effects in the
maritime ecosystem and passenger safety [2].

In previous work, we developed the ‘Event Calculus for Run-
Time reasoning’ (RTEC), a formal computational framework for
event recognition [3]. RTEC is an Event Calculus dialect [18] that
includes optimisation techniques supporting efficient event recogni-
tion. A form of caching stores the results of sub-computations in the
computer memory to avoid unnecessary re-computations. A simple
indexing mechanism makes RTEC robust to events that are irrelevant
to the computations we want to perform. A set of interval manipu-
lation constructs simplify event patterns and improve reasoning effi-
ciency. Furthermore, a ‘windowing’ mechanism makes event recog-
nition history-independent.

RTEC is a logic programming implementation of the Event Cal-
culus. This way, event patterns have a formal, declarative semantics
[3]. On the other hand, RTEC does not have built-in support for dis-
tributed processing. This is a significant limitation, as Big Data appli-
cations, such as maritime monitoring, require the processing of high
velocity SDE streams. Moreover, the integration of RTEC into non-
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Prolog systems is not always straightforward, requiring workarounds
that hinder performance.

To deal with the increasing velocity and volume demands of to-
day’s applications, we developed ‘dRTEC’, a distributed implemen-
tation of RTEC. dRTEC employs Spark Streaming4, an extension of
the Apache Spark API that enables scalable, high-throughput and
fault-tolerant stream processing. Reasoning in Spark Streaming may
be performed exclusively in memory, where the input SDE stream is
aggregated into a series of batch computations on small time inter-
vals. dRTEC uses Spark Streaming’s inherent support for distributed
processing to take advantage of modern multi-core hardware for scal-
able event recognition.

The use of Spark Streaming additionally facilitates the integration
of dRTEC, as an event recognition module, into existing (large-scale)
stream processing systems. dRTEC has been evaluated in the con-
text of two such systems. First, in the context of the SYNAISTHISI
project5, dRTEC is the human activity recognition module detecting
‘long-term activities’, such as fighting and leaving unattended ob-
jects, given ‘short-term’ activities detected on video frames by the
underlying visual information processing components. In this appli-
cation, we evaluated dRTEC using a benchmark activity recognition
dataset. Second, in the datACRON project6, dRTEC recognises sus-
picious and illegal vessel activities given a compressed vessel posi-
tion stream produced by a trajectory processing module. To evaluate
dRTEC on the maritime domain, we used a real position stream from
over 6,000 vessels sailing through the Greek seas in the summer of
2009. The empirical analysis showed that dRTEC scales better than
RTEC, both to increasing velocity SDE streams and larger numbers
of CEs.

The remainder of the paper is organised as follows. In the follow-
ing section we briefly review RTEC. Then, we introduce they key
components of dRTEC. Section 4 presents our empirical analysis,
while in Section 5 we summarise our approach, discuss related work
and outline directions for further research.

2 Event Calculus for Run-Time Reasoning

dRTEC is a distributed implementation of RTEC7, the ‘Event Cal-
culus for Run-Time reasoning’ [3]. The time model of RTEC is lin-
ear including integer time-points. Where F is a fluent—a property
that is allowed to have different values at different points in time—
the term F =V denotes that fluent F has value V . Table 1 presents
the main RTEC predicates. Variables start with an upper-case letter,
while predicates and constants start with a lower-case letter. The hap-
pensAt predicate defines the event instances, the initiatedAt and termi-

4 http://spark.apache.org/streaming/
5 http://iot.synaisthisi.iit.demokritos.gr/
6 http://www.datacron-project.eu/
7 https://github.com/aartikis/RTEC
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natedAt predicates express the effects of events, while the holdsAt and
holdsFor predicates express the values of the fluents. holdsAt and
holdsFor are defined in such a way that, for any fluent F ,
holdsAt(F =V, T ) if and only if T belongs to one of the maximal
intervals of I for which holdsFor(F =V, I).

We represent instantaneous SDEs and CEs by means of happensAt,
while durative SDEs and CEs are represented as fluents. The ma-
jority of CEs are durative and thus, in CE recognition the task is to
compute the maximal intervals for which a fluent representing a CE
has a particular value continuously.

Table 1. RTEC Predicates.

Predicate Meaning

happensAt(E, T ) Event E occurs at time T

initiatedAt(F =V, T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T ) At time T a period of time
for which F =V is terminated

holdsAt(F =V, T ) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

union all(L, I ) I is the list of maximal intervals
produced by the union of the lists of
maximal intervals of list L

intersect all(L, I ) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

relative complement all(I ′,L, I ) I is the list of maximal intervals
produced by the relative complement
of the list of maximal intervals I′
with respect to every list
of maximal intervals of list L

Fluents in RTEC are of two kinds: simple and statically deter-
mined. For a simple fluent F , F =V holds at a particular time-
point T if F =V has been initiated by an event that has occurred
at some time-point earlier than T , and has not been terminated
in the meantime. This is an implementation of the law of inertia.
To compute the intervals I for which F =V holds continuously,
i.e. holdsFor(F =V, I), we compute all time-points Ts at which
F =V is initiated, and then, for each Ts, we find the first time-point
Tf after Ts at which F =V is terminated. Consider the following
example from activity recognition:

initiatedAt(leaving object(P ,Obj )= true, T )←
happensAt(appear(Obj ), T ),
holdsAt(inactive(Obj )= true, T ),
holdsAt(close(P ,Obj )= true, T ),
holdsAt(person(P)= true, T )

(1)

terminatedAt(leaving object(P ,Obj )= true, T )←
happensAt(disappear(Obj ), T )

(2)

The above rules are intended to capture the activity of leaving an
object unattended. appear and disappear are instantaneous SDEs
produced by the underlying computer vision algorithms. An entity
‘appears’ when it is first tracked. Similarly, an entity ‘disappears’
when it stops being tracked. An object carried by a person is not
tracked—only the person that carries it is tracked. The object will
be tracked, that is, it will ‘appear’, if and only if the person leaves it
somewhere. inactive is a durative SDE. Objects (as opposed to per-
sons) can exhibit only inactive activity. close(P ,Obj ) is a statically
determined fluent indicating whether the distance between two enti-
ties P and Obj, tracked in the surveillance videos, is less than some

threshold of pixel positions. person(P) is a simple fluent indicating
whether there is sufficient information that entity P is a person as
opposed to an object. According to rule (1), ‘leaving object’ is ini-
tiated when an inactive entity starts being tracked close to a person.
Rule (2) dictates that ‘leaving object’ stops being recognised when
the entity is no longer tracked. The maximal intervals during which
leaving object(P ,Obj )= true holds continuously are computed us-
ing the built-in RTEC predicate holdsFor from rules (1) and (2).

In addition to the domain-independent definition of holdsFor,
RTEC supports application-dependent holdsFor rules, used to define
the values of a fluent F in terms of the values of other fluents.
Such a fluent F is called statically determined. holdsFor rules of this
type make use of interval manipulation constructs—see the last three
items of Table 1. Consider the following example:

holdsFor(greeting(P1 ,P2 )= true, I )←
holdsFor(close(P1 ,P2 )= true, I1 ),
holdsFor(active(P1 )= true, I2 ),
holdsFor(inactive(P1 )= true, I3 ),
holdsFor(person(P1 )= true, I4 ),
intersect all([I3 , I4 ], I5 ),
union all([I2 , I5 ], I6 ),
holdsFor(person(P2 )= true, I7 ),
holdsFor(running(P2 )= true, I8 ),
holdsFor(abrupt(P2 )= true, I9 ),
relative complement all(I7 , [I8 , I9 ], I10 ),
intersect all([I1 , I6 , I10 ], I )

(3)

In activity recognition, we are interested in detecting whether two
people are greeting each other. A greeting distinguishes meetings
from other, related types of interaction. Similar to inactive , active
(mild body movement without changing location), running and
abrupt are durative SDEs produced by the vision algorithms. Ac-
cording to rule (3), two tracked entities P1 and P2 are said to be
greeting, if they are close to each other, P1 is active or an inac-
tive person, and P2 is a person that is neither running nor moving
abruptly.

RTEC restricts attention to hierarchical formalisations, those
where it is possible to define a function level that maps all fluents
and all events to the non-negative integers as follows. Events and
statically determined fluents of level 0 are those whose happensAt and
holdsFor definitions do not depend on any other events or fluents. In
CE recognition, they represent the input SDEs. There are no simple
fluents in level 0. Events and simple fluents of level n (n>0) are
defined in terms of at least one event or fluent of level n−1 and a
possibly empty set of events and fluents from levels lower than n−1.
Statically determined fluents of level n are defined in terms of at least
one fluent of level n−1 and a possibly empty set of fluents from lev-
els lower than n−1.

RTEC performs CE recognition by means of continuous query
processing, and concerns the computation of the maximal intervals
of fluents. At each query time Qi, the input entities that fall within
a specified sliding window ω are taken into consideration. All input
entities that took place before or at Qi−ω are discarded/‘forgotten’.
This constraint ensures that the cost of CE recognition depends only
on the size of ω and not on the complete SDE history. The size of ω,
and the temporal distance between two consecutive query times—the
‘step’ Qi−Qi−1—are tuning parameters that can be chosen by the
user.

When ω is longer than the step Qi−Qi−1, it is possible that an
SDE occurs in the interval (Qi−ω,Qi−1] but arrives at RTEC only
after Qi−1; its effects are taken into account at query time Qi. This
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Figure 1. Windowing in RTEC.

is illustrated in Figure 1. The figure displays the occurrences of in-
stantaneous SDEs as dots and durative ones as line segments. For
CE recognition at Q138, only the SDEs marked in black are con-
sidered, whereas the greyed out ones are neglected. Assume that all
SDEs marked in bold arrived only after Q137. Then, we observe that
two SDEs were delayed i.e. they occurred before Q137, but arrived
only after Q137. In this example, the window is larger than the step.
Hence, these SDEs are not lost but considered as part of CE recogni-
tion at Q138.

After ‘forgetting’ SDEs, RTEC computes and stores the intervals
of CEs. At Qi, the CE intervals computed by RTEC are those that
can be derived from SDEs that occurred in the interval (Qi−ω,Qi],
as recorded at time Qi. RTEC adopts a caching technique where flu-
ents are processed in a bottom-up manner; this way, the intervals of
the fluents that are required for the processing of a fluent of level
n will simply be fetched from the cache without the need for re-
computation. More details about the reasoning engine of RTEC (in-
cluding a complexity analysis), as well as its expressivity, may be
found at [3].

3 Distributed Event Calculus

dRTEC is a distributed implementation of RTEC in Spark Stream-
ing using the Scala programming language. Like RTEC, dRTEC per-
forms CE recognition by means of continuous temporal projection,
i.e. at each query time dRTEC computes the maximal intervals of
fluents given an incoming SDE stream. Other tasks offered by other
Event Calculus implementations, such as abduction, are not sup-
ported. In addition to the optimisation techniques of RTEC, such as
windowing, dRTEC supports CE recognition using a structured set of
operations for distributed reasoning. dRTEC follows a syntax-based,
application-independent approach to translate query processing into
distributed reasoning. Figure 2 illustrates the basic components of
the engine using the activity recognition application. dRTEC accepts
SDE streams through MQTT8, a lightweight publish-subscribe mes-
saging transport. Spark Streaming separates the incoming stream into
individual sets, called ‘micro-batches’. The window in dRTEC may
contain one or more micro-batches. Each micro-batch may contain
events, expressed by happensAt, and fluents, expressed by holdsFor.
For example, according to the SDEs in the first micro-batch shown
in Figure 2, the entity id0 started being tracked—‘appeared’—at
time/video frame 80. Moreover, the entity id1 was running contin-
uously in the interval [90,100).

dRTEC performs various tasks on the incoming SDE streams.
These are presented in the sections that follow. (We focus on the
novel components of dRTEC, discussing only briefly the implemen-
tation of the RTEC reasoning techniques in Spark Streaming.) The
CEs that are recognised using the incoming SDEs are streamed out
through MQTT (see ‘Output Stream’ in Figure 2).

8 http://mqtt.org/

3.1 Dynamic Grounding & Indexing
At each recognition time Qi, RTEC grounds the CE patterns using
a set of constants for the variables appearing in the patterns, except
the variables related to time. Moreover, RTEC operates under the as-
sumption that the set of constants is ‘static’, in the sense that it does
not change over time, and known in advance. For instance, in the
maritime surveillance domain, RTEC operates under the assumption
that all vessel ids are known beforehand. Similarly, in activity recog-
nition all ids of the tracked entities are assumed to be known. For
many application domains, this assumption is unrealistic. More im-
portantly, there are (many) query times in which RTEC attempts to
recognise CEs for (many) constants, for which no information exists
in the current window.

To address this issue, dRTEC supports ‘dynamic’ grounding. At
each query time Qi, dRTEC scans the SDEs of the current window
ω to construct the list of entities for which CE recognition should
be performed. Then, it appends to this list all entities that have CE
intervals overlapping Qi−ω. Such intervals may be extended or (par-
tially) retracted, given the information that is available in the current
window. In this manner, dRTEC avoids unnecessary calculations by
restricting attention to entities for which a CE may be recognised at
the current query time.

Indexing is used to convert the input SDEs into a key-value pair
format for data partitioning. The partitions are distributed among the
available cores (processing threads) of the underlying hardware for
parallel processing. Each SDE is indexed according to its entity. In
activity recognition, for example, the index concerns the ids of the
tracked entities (see ‘Dynamic Grounding & Indexing’ in Figure 2).
For each window, the SDEs concerning the same entity are grouped
together and subsequently sent to the same processing thread.

3.2 Non-Relational Processing
Indexing is followed by non-relational fluent processing performed at
each thread in parallel (see the ‘Non-Relational Processing’ boxes of
Figure 2). Non-relational processing refers to the computation of the
maximal intervals of fluents involving a single entity. (In the absence
of such fluents, dRTEC proceeds directly to ‘pairing’.) In activity
recognition, for example, we want to determine whether a tracked
entity is a human or an object (see the rules presented in Section 2).
An entity is said to be a person if it has exhibited one of the ‘running’,
‘active’, ‘walking’ or ‘abrupt movement’ short-term behaviours since
it started being tracked. In other words, the classification of an en-
tity as a person or an object depends only the short-term activities
of that entity. The distinction between non-relational and relational
processing allows us to trivially parallelise a significant part of the
CE recognition process (non-relational CE patterns). The processing
threads are independent from one another, avoiding data transfers
among them that are very costly.

Non-relational, as well as relational processing, concerns both
statically determined and simple fluent processing, and windowing.
These tasks are discussed in Section 3.4.

3.3 Pairing & Relational Processing
Relational processing concerns CE patterns that involve two or more
entities. In activity recognition, we want to recognise whether two
people are moving together or fighting. Prior to relational CE recog-
nition, dRTEC produces all possible relations that may arise from
the list of entities computed by the dynamic grounding process—
see ‘Pairing’ in Figure 2. Then, these relations are distributed to all
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Figure 2. dRTEC processing.

available processing threads for parallel CE recognition. Note that,
in contrast to non-relational processing, the information available to
each processing thread is not disjoint. Assume, for example, that the
pair (id0, id1) is processed by processing thread 1, while the pair (id1,
id2) is processed by thread 2. Then both threads will have the output
of non-relational processing concerning id1 (e.g. the list of maximal
intervals during which id1 is said to be a person). However, there is no
replication of computation, as the output of non-relational process-
ing is cached, and the sets of relations of the processing threads are
disjoint. Furthermore, similar to non-relational processing, each pro-
cessing thread has all the necessary information, thus avoiding costly
data transfers.

3.4 Fluent Processing

As mentioned earlier, both relational and non-relational processing
concern the computation of the list of maximal intervals of fluents.
For both types of fluent, simple and statically determined, dRTEC
follows the reasoning algorithms of RTEC. For example, in the case
of a simple fluent CEs , dRTEC checks, at each query time Qi, if
there is a maximal interval of CEs that overlaps Qi−ω. If there is
such an interval then it will be discarded, while its initiating point
will be kept. Then, dRTEC computes the initiating points of CEs in
(Qi−ω,Qi], and appends them to initiating point (if any) prior to
Qi−ω. If the list of initiating points is empty then the empty list of
intervals is returned. Otherwise, dRTEC computes the terminating
points of CEs in (Qi−ω,Qi], and pairs adjacent initiating and ter-
minating points, as discussed in Section 2, to produce the maximal
intervals.

Definitions 1 and 2 show, respectively, the initiating and termi-
nating conditions of the ‘leaving object’ CE that were presented in
Section 2 in the language of RTEC. Recall that ‘leaving object’ is a
simple fluent. The GI function (GETINTERVAL, in full) retrieves the
list of maximal intervals of a fluent. GI has three parameters: (a) the

Definition 1 Initiation of leaving object in dRTEC.
I1← GI(occurrences , Obj , Fluent(happensAt , appear ))
I2← GI(occurrences , Obj , Fluent(holdsFor , inactive, true))
I3← GI(occurrences , (P ,Obj ), Fluent(holdsFor , close, true))
I4← GI(occurrences , P , Fluent(holdsFor , person , true))
I ← I1.INTERSECT ALL(I2).INTERSECT ALL(I3).INTERSECT ALL(I4)

‘collection occurrences’, i.e. a map pointing to the list of maximal
intervals of a fluent, (b) the list of entities/arguments of the fluent,
and (c) the fluent object. dRTEC uses exclusively intervals in its pat-
terns. The occurrence of an event (e.g. ‘appear’) is represented by
an instantaneous interval. This way, in addition to statically deter-
mined fluents, the interval manipulation constructs can be used for
specifying simple fluents. In dRTEC these constructs are supported
by ‘interval instances’ (see e.g. the last line of Definition 1).

Definition 2 Termination of leaving object in dRTEC.
I ← GI(occurrences , Obj , Fluent(happensAt , disappear ))

Statically determined fluents in dRTEC are specified in a similar
manner. Definition 3, for example, shows the specification of ‘greet-
ing’ (see rule (3) for the RTEC representation).

Definition 3 Statically determined fluent greeting in dRTEC.
I1← GI(occurrences , (P1 ,P2 ), Fluent(holdsFor , close, true))
I2← GI(occurrences , P1 , Fluent(holdsFor , active, true))
I3← GI(occurrences , P1 , Fluent(holdsFor , inactive, true))
I4← GI(occurrences , P1 , Fluent(holdsFor , person , true))
I5← I3.INTERSECT ALL(I4)
I6← I2.UNION ALL(I5)
I7← GI(occurrences , P2 , Fluent(holdsFor , person , true))
I8← GI(occurrences , P2 , Fluent(holdsFor , running , true))
I9← GI(occurrences , P2 , Fluent(holdsFor , abrupt , true))
I10← I7.RELATIVE COMPLEMENT ALL(I8.UNION ALL(I9))
I ← I1.INTERSECT ALL(I6).INTERSECT ALL(I10)
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(c) dRTEC vs RTEC: 110 sec window.
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(e) dRTEC vs RTEC: 24 processing threads.
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(f) dRTEC vs RTEC: 110 sec window.

Figure 3. Activity recognition. Figures (a)–(c) (respectively (d)–(f)) concern the dataset with 10 (20) tracked entities.

4 Empirical Analysis
dRTEC has been evaluated in the context of two stream processing
systems. In the system of the SYNAISTHISI project, dRTEC is the
long-term activity recognition module operating on short-term ac-
tivities detected on video frames. In the datACRON project, dRTEC
recognises suspicious and illegal vessel activities given a compressed
vessel position stream produced by a trajectory processing module.
The empirical analysis presented below was performed on a com-
puter with dual Intel Xeon E5-2630 processors, amounting to 24
processing threads, and 256GB RAM, running Ubuntu 14.04 LTS
64-Bit with Linux kernel 3.13 and Java OpenJDK 1.8. dRTEC is
implemented in Apache Spark Streaming 1.5.2 using Scala 2.11.7.
The source code, including the CE patterns for both applications, is
publicly available9. dRTEC’s warm up period is excluded from the
presented results. In all cases, dRTEC recognises the same CEs as
RTEC.

4.1 Activity Recognition
The SYNAISTHISI project aims at developing customisable, dis-
tributed, low-cost security and surveillance solutions. To evaluate
dRTEC, we used the CAVIAR benchmark dataset10 which consists
of 28 surveillance videos of a public space. The CAVIAR videos
show actors which are instructed to carry out several scenarios. Each
video has been manually annotated by the CAVIAR team to pro-
vide the ground truth for activities which take place on individual
video frames. These short-term activities are: entering and exiting the
surveillance area, walking, running, moving abruptly, being active
and being inactive. We view these activities as SDEs. The CAVIAR
team has also annotated the videos with long-term activities: a per-
son leaving an object unattended, people having a meeting, moving
together, and fighting. These are the CEs that we want to recognise.

The CAVIAR dataset includes 10 tracked entities, i.e. 90 entity
pairs (most CEs in this application concern a pair of entities), while
the frame rate is 40 milliseconds (ms). On average, 179 SDEs are
detected per second (sec). To stress test dRTEC, we constructed a

9 https://github.com/blackeye42/dRTEC
10 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1

larger dataset. Instead of reporting SDEs every 40 ms, the enlarged
dataset provides data in every ms. The SDEs of video frame/time k
of the original dataset are copied 39 times for each subsequent ms
after time k. The resulting dataset has on average of 3,474 SDEs per
sec. Figures 3(a)–3(c) show the experimental results on this dataset.
We varied the window size from 10 sec to 110 sec. The slide step
Qi−Qi−1 was set to be equal to the size of the window. Figure 3(a)
shows the average number of SDEs per window size. The 10 sec
window corresponds to approximately 36K SDEs while the 110 sec
one corresponds to 365K SDEs. Figure 3(a) also shows the number
of recognised CEs; these range from 80 to 230.

The average CE recognition times per window (in CPU seconds)
for both dRTEC and RTEC are shown in Figure 3(b). dRTEC made
use of all 24 processing threads. With the exception of the smallest
window size, dRTEC outperforms RTEC. To allow for a fairer com-
parison, we invoked 24 instances of RTEC, each using in parallel one
processing thread of the underlying hardware. Every RTEC instance
was set to perform CE recognition for at most 4 entity pairs, and was
provided only with the SDEs concerning the entities of these pairs
(no load balancing was performed). In this setting, dRTEC outper-
forms RTEC for most window sizes, but only slightly.

Figure 3(c) shows the effect of increasing the number of avail-
able processing threads on the performance of dRTEC and RTEC.
We varied the number of available threads from 2 to 24; the win-
dow size was set to 110 sec. RTEC achieves its best performance
early—the increase of processing threads affects it only slightly. In
contrast, dRTEC requires all 24 processing threads to match (slightly
outperform) RTEC. The cost of data partitioning through dynamic
grounding and indexing in dRTEC pays off only in the case of 24
threads.

To stress test further dRTEC, we constructed an even larger dataset
by adding a copy of the previous dataset with new identifiers for
the tracked entities. Thus, the resulting dataset contains a total of 20
tracked entities and 380 entity pairs, while approximately 7K SDEs
take place per sec. Figures 3(d)–3(e) show the experimental results.
We varied again the window size from 10 sec to 110 sec. In this case,
however, the SDEs range from 72K to 730K (see Figure 3(d)). The
number of recognised CEs is also much higher; it ranges from 390 to
1100.
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(c) dRTEC vs RTEC: 24 hour window.

Figure 4. Event recognition for maritime surveillance.

Figure 3(e) shows the average CE recognition times per window
when all 24 processing threads were available both to dRTEC and
RTEC. Each RTEC instance was set to perform CE recognition for at
most 16 entity pairs, having available only the SDEs concerning the
entities of these pairs. Both dRTEC and RTEC remain real-time, even
in the presence of 730K SDE windows. In this set of experiments,
dRTEC outperforms RTEC in all window sizes, and the difference
is more significant. This is an indication that dRTEC scales better to
larger datasets. Figure 3(f) shows the effect of increasing the number
of processing threads. We observe a similar pattern to that of the
previous experiments (see Figure 3(c)).

4.2 Maritime Surveillance
The datACRON project aims to develop novel methods for detecting
threats and abnormal activity in very large numbers of moving enti-
ties operating in large geographic areas. In the stream processing sys-
tem of datACRON, dRTEC serves as the component recognising var-
ious types of suspicious and illegal vessel activity. We conducted ex-
periments against a real position stream from the Automated Identi-
fication System11, spanning from 1 June 2009 to 31 August 2009, for
6,425 vessels sailing through the Aegean, the Ionian, and part of the
Mediterranean Sea12. The trajectory detection module of datACRON
compresses the vessel position stream to a stream of critical move-
ment events of the following types: ‘low speed’, ‘speed change’,
‘gap’, indicating communication gaps, ‘turn’, and ‘stopped’, indicat-
ing that a vessel has stopped in the open sea. Each such event includes
the coordinates, speed and heading of the vessel at the time of crit-
ical event detection. This way, the SDE stream includes 15,884,253
events. Given this SDE stream, we recognise the following CEs: il-
legal shipping, suspicious vessel delay and vessel pursuit.

We varied the window size from 1 hour, including approximately
26K SDEs, to 24 hours, including 285K SDEs (see Figure 4(a)). The
slide step Qi−Qi−1 is always equal to the window size. The number
of recognised CEs ranges from 5K to 86K. In other words, the recog-
nised CEs are almost two orders of magnitude more than the CEs in
the activity recognition application.

Figure 4(b) shows the average CE recognition times per window
when all processing threads were used by both implementations.
Similar to the previous experiments, each RTEC instance was given
only the SDEs of the vessels for which it performs CE recognition.
Although RTEC matches the performance of dRTEC for small win-
dow sizes (1 hour and 2 hour windows), dRTEC scales much better to
larger window sizes. In other words, dRTEC seems to perform much
better in the presence of a large number of CEs. Figure 4(c) shows

11 http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
12 This anonymised dataset (for privacy, each vessel id has

been replaced by a sequence number) is publicly available at
http://chorochronos.datastories.org/?q=content/imis-3months

the effect of increasing the processing threads. Unlike the activity
recognition application, dRTEC outperforms RTEC even when just
a few processing threads are available. Similar to the activity recog-
nition domain, dRTEC makes better use of the increasing number of
threads.

5 Discussion

Several techniques have been proposed in the literature for complex
event processing in Big Data applications, including pattern rewrit-
ing [26], rule distribution [25], data distribution [13, 4] and parallel
publish-subscribe content matching [21]. See [15, 16] for two recent
surveys. Moreover, Spark Streaming has been recently used for com-
plex event processing13. The key difference between our work and
these approaches is the use of the Event Calculus. dRTEC inherits
from RTEC the ability to represent complex temporal phenomena,
explicitly represent CE intervals and thus avoid the related logical
problems [23], and perform reasoning over background knowledge.
This is in contrast to other complex event recognition systems, such
as [8, 19], the well-known SASE engine14 [27], and the Chronicle
Recognition System [12].

Concerning the Event Calculus literature, dRTEC includes a win-
dowing technique. On the contrary, no Event Calculus system ‘for-
gets’ or represents concisely the SDE history. Moreover, dRTEC em-
ploys a data partitioning technique using dynamic grounding and
indexing. This way, dRTEC can take advantage of modern multi-
core hardware. This is in contrast to Event Calculus approaches
[7, 5, 24, 6, 22], where the implementations have no built-in sup-
port for distributed processing. For instance, our empirical evaluation
verified that dRTEC scales better than RTEC, both to SDE streams
of increasing velocity and larger numbers of CEs. Note that RTEC
has proven efficient enough for a variety of real-world applications
[3, 2], and already outperforms the well-known Esper engine15 in a
wide range of complex event recognition tasks [1].

Several event processing systems, such as [14, 11, 8, 10, 20], op-
erate only under the assumption that SDEs are temporally sorted. On
the contrary, dRTEC supports out-of-order SDE streams and may dy-
namically update the intervals of recognised CEs, or recognise new
CEs, as a result of delayed SDE arrival.

The use of Spark Streaming in dRTEC facilitates the integration
with other modules not implemented in Prolog, such as the computer
vision modules of the SYNAISTHISI project and the trajectory com-
pression module of datACRON. The integration of RTEC with such
modules was often problematic, due to issues of the libraries integrat-
ing Prolog with other programming languages. Moreover, dRTEC

13 https://github.com/Stratio/Decision
14 http://sase.cs.umass.edu/
15 http://www.espertech.com/esper/
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avoids the memory management issues of Prolog systems that arise
from continuous query computations.

For further work, we are investigating the use of a streaming in-
frastructure that does not rely on micro-batching (e.g. Flink16). Fur-
thermore, we aim to integrate (supervised) structure learning tech-
niques for the automated construction of Event Calculus patterns
[17].
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