An Intelligent System for Smart Tourism
Simulation in a Dynamic Environment

Mohannad Babli, Jestis Ibafez, Laura Sebastid, Antonio Garrido, Eva Onaindia !

Abstract. In this paper, we present a smart tourism system
that plans a tourist agenda and keeps track of the plan exe-
cution. A Recommendation System returns the list of places
that best fit the individual tastes of the tourist and a planner
creates a personalized agenda or plan with indication of times
and durations of visits. The key component of the system is
the simulator in charge of the plan monitoring and execution.
The simulator periodically updates its internal state with in-
formation from open data platforms and maintains a snapshot
of the real-world scenario through live events that communi-
cate sensible environmental changes. The simulator builds a
new planning problem when an unexpected change affects the
plan execution and the planner arranges the tourist agenda
by calculating a new plan.

1 INTRODUCTION

The exponential growth of the Internet of Things (IoT) and
the surge of open data platforms provided by city govern-
ments worldwide is providing a new foundation for travel-
related mobile products and services. With technology being
embedded on all organizations and entities, the application
of the smartness concept to address travellers’ needs before,
during and after their trip, destinations could increase their
competitiveness level [2].

Smart tourism differs from general e-tourism not only in
the core technologies of which it takes advantage but also in
the approaches to creating enhanced at-destination experi-
ences [8]. In the work [14], authors identify the requirements
of smart technology integration in personalized tourism expe-
riences including information aggregation, ubiquitous mobile
connectedness and real time synchronization.

Many tourism applications provide a personalized tourist
agenda with the list of recommended activities to the user
[12, 13, 5, 16, 15]. In many cases, these systems provide a dy-
namic interaction that allows the user to interact with such
agenda by adding or removing activities or changing their
order. Additionally, the use of GPS in mobile devices al-
lows recommender systems to locate the future user’s location
and recommend the most interesting places to visit. However,
most of these applications work with fixed and static infor-
mation throughout the execution of the activities. In other
words, they do not easily react before changes in the world;
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for instance, a museum that closes, a restaurant which is fully
booked, a bus route that is now diverted, etc. This has critical
implications on the way tourists regard their experiences. Ac-
tivities, even pre-designed in advance, must be dynamically
adapted and personalized in real time. One essential prerequi-
site for smart technology is real time synchronization, which
implies that information is not limited to a-priori collection
but can be collected and updated in real time [14].

Creating an agile and adaptable tourist agenda to the dy-
namic environment requires tracing the plan and checking
that activities happen as expected. This involves plan moni-
toring and possibly finding a new tourist agenda organization
in case some particular activity can not be realized. In this
paper, we relate our experience with a context-aware smart
tourism simulator.

From the monitoring and simulation perspective, there
exist many frameworks for different programming lan-
guages that support discrete event-based simulators (e.g.
http://jamesii.informatik.uni-rostock.de/jamesii.org
http://desmoj.sourceforge.net/home.html,
http://simpy.readthedocs.io/en/latest/). Although
they can be programmed for very particular scenarios, they
fail to take a general domain description and simulate its
behavior in highly dynamic environments. At this stage,
planning technology can be very valuable. The Planning
Domain Definition Language (PDDL) provides a simple way
to define the physics of the domain (a tourism domain in
our case, although it is valid for any other scenario) and
the particular problem that instantiates such a domain. In
PDDL we can define the activities to be executed similarly to
rules, with their preconditions, effects and other interesting
features like duration, cost, reward, etc. The result of using
planning in a tourism domain is a plan, represented as the
agenda of activities the user will follow. The plan needs to
be validated, executed and adapted, if necessary, to new
information. VAL is a plan validation tool [9] that can be
used to validate and simulate a successful plan execution.
However, VAL does not consider the dynamic changes of the
world and, consequently, it cannot react to them.

In this work, we present a smart tourism system that at-
tempts to overcome the previous limitations. Particularly, we
use a PDDL tourism description that can be easily adapted
to many different scenarios with new activities, preconditions,
effects and points of interest. We run a planner to obtain a
plan and we simulate the plan execution like in a real con-
text, dynamically simulating changes in the environment. The
simulator reacts to the changes by checking whether the real
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Figure 1. GLASS Architecture

world matches the expected one or not and reformulating the
PDDL problem if a failure in the plan is detected, while trying
to reuse as many of the original set of recommended activities
as possible.

This paper is organized as follows. Next section outlines the
architecture of the smart tourism system. Section 3 presents
the planning description of the tourism domain and highlights
the main components of a planning problem. Section 4 de-
scribes the simulator behaviour with a special emphasis on
the reformulation of a planning problem. Section 5 presents a
case of study of a tourist plan in the city of Valencia in Spain
and last section concludes.

2 GLASS ARCHITECTURE

This work is part of the ongoing GLASS?® (Goal-management
for Long-term Autonomy in Smart citieS) project applied to
a tourism domain. The idea here is to apply different strate-
gies for dividing the set of goals (i.e. tourist recommendations
based on previous plans executions by other tourists) for each
user by using different utility recommendations systems. The
GLASS architecture is shown in Figure 1. As can be seen,
the architecture simply consists of a two-process loop: plan-
ning module and simulation+monitoring that share common
information.

On the one hand, the input information is retrieved from
different data sources. First, we need the user profile with
the explicit interests of the user, the goals and preferences
(such as points of interest he/she wants to visit), and tem-
poral constraints. Second, we need to access a different set
of databases that identify and categorize the points of in-
terest (e.g. museums, restaurants, etc.), their timetable, and
geographic sources to find out routes, distances and times be-
tween points. Currently, we use standard APIs, such as Google
Places* and Directions® for this, but other open databases
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would be also valid, such as OpenStreetMap®. Third, there
exists a snapshot of the environment or real-world scenario
where the plan is executed. Since this world is highly dy-
namic and can change frequently (e.g. the opening hours of a
museum has changed, or a restaurant is fully booked and the
duration for having lunch is longer than expected), we get the
new information as live events.

On the other hand, the planning module takes the user
profile and the problem information to create a planning sce-
nario in a PDDL format, as described in Section 3. We need to
model the user preferences, constraints and the actions that
the user can do, such as visit or move. The output of this is
a plan, as a sequence of actions the user has to execute. As a
proof of concept, in GLASS we actually simulate that execu-
tion rather than having a real execution that would require
a true group of tourists equipped with sensoring information
to their current geographic positions, pending and already
satisfied goals, etc. This simulation process, more detailed in
Section 4, takes the plan and creates a timeline structure to
run a timed events based execution. It simulates and monitors
the resulting states of the world, according to the changes in
the plan, that is the effects that actions provoke and, proba-
bly, being also modified by the live events. This simulation is
shown in a specially designed Graphical User Interface that
shows what is happening at any time. If the expected state is
different to the real state, i.e. a discrepancy has been discov-
ered, because some live events prevent the remaining actions
in the plan from being executed, a (re)planning module be-
comes necessary. The idea is to reuse the same planning mod-
ule, thus closing the loop, with a new PDDL domain+problem
specification to adapt the plan to the new emerging scenario.

3 PLANNING MODULE

The main goal of our system is to provide a personalized plan
to a given tourist. This resulting plan has to reflect the prefer-
ences of the tourist according to his/her profile (demographic
classification, the places visited by the user in former trips and
the current visit preferences). Moreover, in order to build this
plan, the duration of the activities to perform, the opening
hours of the places to visit and the geographical distances be-
tween places (time to move from one place to another) needs
also to be considered. Thus, solving this problem requires the
use of a planning system capable of dealing with durative ac-
tions to represent the duration of visits; temporal constraints
to express the opening hours of places and soft goals for the
user preferences. Soft goals will be used to denote the prefer-
able visits of the user, the non-mandatory goals that we wish
to satisfy in order to generate a good plan that satisfies the
user but that do not have to be achieved in order for the plan
to be correct. In our case, the goal of visiting a recommended
place according to the user profile (the list of potential places
that the user can visit is returned by a Recommender Sys-
tem), is defined as a soft goal (more details in section 3.2).
Among the few automated planners capable of handling tem-
poral planning problems with preferences, we opted for OPTIC
[1] because it handles the version 3.0 of the popular Planning
Domain Definition Language (PDDL) [7], including soft goals.

directions

5 More info at https://developers.google.com/maps/documentation/ 5 More info at http://wiki.openstreetmap.org/wiki/API



All the information required by OPTIC to build the plan is
compiled into a planning problem encoded in PDDL3.0 lan-
guage, as described in the following sections.

3.1 Initial state

The initial state of a planning problem describes the state
of the world when the plan starts its execution. The initial
state must reflect the opening hours of the places to visit, the
distances between them, the initial location of the user, etc.
Some information is expressed with predicates and functions,
while other information is represented by Timed Initial Liter-
als (TILs). TILs, which were first introduced in PDDL2.2, are
a very simple way of expressing a restricted form of exogenous
events that become true or false at given time points [3].

The predicate (be tourist 71) is used to represent the
location of the user and the pair of TILs (at 0 (active
tourist)) and (at tavailable (not (active tourist))) de-
termine the available time of the user for the tour, where
tavailable is the difference between the time when the tour
starts and finishes. The time indicated in the TILs is relative
to the starting time of the plan; that is, tavaitabie = 540 refers
to 7pm if the plan starts at 10am. Another pair of TILs is
used to define the time window in which the tourist prefers
to have lunch. For example, if the preference is between 2pm
and 4pm, the TILs are (at 240 (time_for_eat tourist))
and (at 360 (not (time_for_eat tourist))).

The duration of a particular visit ?v for a tourist 7t is de-
fined through the numeric function (visit_time ?v 7t). As-
signing a value to a numeric function gives rise to a numeric-
valued fluent; for example, (= (visit_time Lonja tourist)
80) (details about calculating the duration of the visit are
shown in the following section). The list of available restau-
rants is given through the predicate (free_table 7r); for
example, (free_table ricard camarena). For each restau-
rant, we define the time slot in which it serve meals, which
may depend on the type of restaurant, closing time of the
kitchen or other factors. Both, places to visit and restau-
rants, have an opening hour and a closing hour that are
specified by a TIL: (at topen (open a)) and (at teose (not
(open a))), to indicate when the place/restaurant is not
longer available. For example, (at 0 (open Lonja)), (at
540 (not (open Lonja))).

The distance between two locations 7a and ?b is defined by
the function (moving time ?a ?b), which returns the time
in minutes needed to travel from ?7a to ?b by using the
travel mode preferred by the user. The time to move between
two places is represented through a numeric fluent (e.g., (=
(moving_time caro_hotel Lonja) 9)), where the value 9 is
taken from Google Maps.

3.2 Goals and preferences

We handle two types of goals: hard goals, that represent the
realization of an activity that the user has specified as manda-
tory (e.g., the final destination at which the user wants to fin-
ish up the tour (be tourist caro_hotel)); and soft goals or
preferences, that represent the realization of a desirable but
non-compulsory activity (e.g., visiting the Lonja (preference
v3 (visited tourist Lonja))). Preferences are expressed
in PDDL3.0 so we need to define how the satisfaction, or

violation, of these preferences will affect the quality of a plan.
The penalties for violation of preferences (costs) will be han-
dled by the planner in the plan metric to optimize at the time
of selecting the best tourist plan; i.e., the plan that satisfies
the majority of the tourist preferences and thereby minimizes
the penalties for violation.

The objective is to find a plan that achieves all the hard
goals while minimizing a plan metric to maximize the prefer-
ence satisfaction; that is, when a preference is not fulfilled, a
penalty is added to the metric. Specifically, we define penal-
ties for non-visited POIs and for travelling times.

The penalty for non-visited places is aimed to help the plan-
ner select the activities (tourist visits) with a higher priority
for the user. Given a plan II, this penalty is calculated as the
ratio between the priority of the activities not included in II
and the priority of the whole set of activities recommended
to the user (RA):

ZaERA—H Pre
ZELERA Pre

For example, if the priority for visiting the Lonja is 290, and
the sum of the priorities of all the visits is 2530, the penalty
for not visiting the Lonja would be expressed in PDDL as: (
/ (x 290 (is-violated v3)) 2530). The priority of the ac-
tivities (Pr®) is calculated by a hybrid Recommender System
(RS) which returns a value between 0 and 300 according to
the estimated degree of interest of the user in activity a. The
value of Pr® is also used by the RS to return a time interval
that encompasses the minimum and maximum recommend-
able visit duration following a normal distribution N (,ua, 02),
where p, represents the average visit duration for a typical
tourist [10]. Thus, the higher the value of Pr®, the longer the
visit duration.

The penalty for movements enforce a reduction in the time
spent in travelling from one location to another, so that closer
activities are visited consecutively. This penalty is calculated
as the duration of all move actions of I (II,,):

Eaenm dur(a)
dur(IT)

Pnon,vi.sitcd =

Pmove -

The function (total moving time tourist) accumulates
the time spent in transportation actions, so this penalty would
be defined in PDDL as: ( / (total-moving time tourist)
540). The plan metric to be minimized by the planner is ex-
pressed as the sum of both penalties: Piotai = Pron_visited +

Pmove .

3.3 Actions

We define three actions in the tourism domain. The action to
move from one location to another is defined in Figure 2. It
takes as parameters the user 7per, the initial location ?from
and the destination ?to. The duration of the action is set to
the estimated/actual time to go from ?from to ?to, which is
stored in the database. The preconditions for this action to
be applicable are: (1) the user is at location ?from and (2) the
time window for the available time of the user is active during
the whole execution of the action. The effects of the action
assert that (1) the user is not longer at the initial location, (2)
the user is at the new location at the end of the action and (3)



(:durative-action move
:parameters (7per - person 7from - location
?to - location)
:duration (= ?7duration (moving_time ?to 7from) )
:condition
(and
(at start (be ?per 7from))
(over all (active 7per)))
reffect
(and
(at start (not (be ?per ?from)))
(at start (walking ?per))
(at end (be ?7per 7to))
(at end (not (walking ?per)))
(at end (increase (total_moving_time ?per)
(moving_time 7from ?7to0)))))

Figure 2. Action move of the tourism domain

the time spent in move actions is modified according to the
movement duration. In order to indicate the position of the
user during the execution of the action, a walking predicate
is asserted at the start of the action and deleted at the end
of the action. In this paper, we only consider walking as the
move action; however, more transportation modes according
to the user’s preferences can be included; e.g., cycling, driving,
and public transport, as in [10] .

The action to visit a place is defined in Figure 3, whose
parameters are the place to visit ?mon and the user ?per. The
duration of the action is defined by the function (visit_time
?mon 7per). The conditions for this action to be applicable
are: (1) the user is at ?mon during the whole execution of the
action; (2) 7mon is open during the whole execution of the
action and (3) the time window for the available time of the
user is active. The effects of the action assert that the place
is visited.

The action to perform the activity of eat is defined in Fig-
ure 4, whose parameters are the user ?pers and the restaurant
?1loc. The duration of the action is defined by the function
(time_for_eat 7pers) and specified by the user. To apply
this action, the following conditions must hold: (1) the user is
at ?loc during the whole execution of the action; (2) ?loc is
open during the whole execution of the action; (3) the restau-
rant has a free table and (4) both the time window for the
time to have lunch defined by the user and the available time
are active. The effects of the action assert that the user has
had lunch.

4 SIMULATOR

The objective of the simulator is to execute the plan and mon-
itor that everything works as expected. To accomplish this, we
first need to create the structures to perform the simulation.
We use a timed event simulation, where events occur at par-
ticular times through a timeline, possibly provoking changes
in the world state. During the plan monitoring, we check the
predicates and functions and we visually show the plan trace
in a specially designed GUI. In case a failure that prevents
an action of the plan from being executed is found during the
plan simulation, we activate a replanning mechanism that re-
quires a knowledge-based reformulation of the new planning
scenario. Next, we describe these tasks in more detail.

(:durative-action visit
:parameters (Pper - person ?mon - monument)
:duration (= ?duration (visit_time ?mon ?per))
:condition
(and
(at start (be 7per ?7mon))
(over all (be ?per 7mon))
(over all (active 7per))
(over all (open 7mon))
ceffect
(and
(at end (visited 7per 7mon))))

Figure 3. Action visit of the tourism domain

(:durative-action eat
:parameters (7pers - person ?loc - restaurant)
:duration (= ?duration (eat_time ?pers 7?loc))
:condition
(and
(at start (free_table 7loc))
(at start (be ?pers ?loc))
(over all (be ?7pers 7loc))
(over all (active 7pers))
(over all (open ?loc))
(over all (time_for_eat 7pers)))
reffect
(and
(at end (eaten ?pers))))

Figure 4. Action eat of the tourism domain

4.1 Timed event simulation: the timeline

A timeline is a simple structure that contains a collection
of unique timed events in chronological order that represents
a sequence of world states and that need to be monitored.
The timeline is generated with the actions of the plan, the
problem information and the live events, as depicted in Fig-
ure 1. A timed event is an event that happens at time ¢ and
contains the following information: (1) the start, over all or
end conditions to be checked at ¢; (2) the start or end ef-
fects to be applied at ¢; (3) TILs that represent exogenous
events but that are defined as part of the problem informa-
tion, so they are known at the time of the plan simulation;
and (4) live events, that dynamically appear during the exe-
cuting/monitoring process and so they are unknown a priori.
This way, a timeline encapsulates the information about the
plan (irrespective of it is a sequential or parallel one), TILs
and live events”, and the corresponding world states. The time
scale of the timeline will depend on the granularity of the
plan and the periodic steps we want to use for monitoring
the timed events. In our implementation, live events can be
manually supplied or they can be retrieved from a datasource
that keeps information about the real world.

Given a plan with two actions (move and visit), of duration
20 and 60, respectively, and a live event that indicates the

7 The information about the plan, problem information and
live events is modeled in PDDL format. We used PDDLA4J
(https://github.com/pellierd/pdd14j), an open source library
that facilitates the development of JAVA tools for automated
planning based on the PDDL language
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Figure 5. An example of a timeline with five timed events.
Note the closed interval for the at start/end conditions and
effects, and the open interval for the over all conditions

museumn is closed (not open) at time 90, the resulting timeline
is shown in Figure 5.

4.2 Plan execution simulation

The simulation of the plan execution requires to set the size
of the execution step that will be applied along the timeline
explained in section 4.1. We can set the step size to the time
granularity of the planner or choose a larger size. The smaller
the size of the execution step, the more frequently access to
external databases (Google APIs) to acquire new information
and update the real-world state. Thus, the execution step size
specified by the user determines the update frequency of the
internal state of the simulator with respect to the real-world
state. If changes frequently occur in the domain, a small ex-
ecution step will result in a more reliable simulation with a
proactive behavior. The simulation state is also updated at
each timed event, checking the conditions of the actions in
the state and applying the effects of the event. Additionally,
the simulator also interacts with the real-world through live
events, which may in turn modify or create new timed events
in the timeline.

The simulation of the plan execution starts at time zero,
with an initial state equal to the real-world state, and the sim-
ulator advances through the timeline in every execution step
(see Figure 5). The simulator checks that conditions are sat-
isfied, the current state matches the expected state, and then
updates the current state accordingly — this whole process is
visually shown in our GUI, described below. More specifically,
every execution step involves two main tasks:

1. processing the live events for changes and update the re-
spective timed events

2. for every unprocessed timed event within the current step:
(1) update the simulation state with the TILs and effects
of the live events; (2) check the conditions of the timed
event to find differences between the current state and the
expected state; and (3) update the state with the effects of
the actions.

If a difference between the current state and the expected
state is found and this difference leads to a situation where the
plan is no longer executable, then a failure has been detected.
In such a case, the GUI informs the user about the cause of
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Figure 6. Simulator graphical user interface

the failure: the action that has failed and the conditions that
have been violated. For instance, in the example of Figure 5,
let us suppose there is a live event at time 60 that indicates
the museum will no longer be open from 60 onwards. In this
case, the overall condition 120.01,80.01[ (open museum) is
violated, which means the visit action cannot be successfully
executed. Then, we need to invoke the replanning module as
described in Section 4.4

4.3 Graphical User Interface

The graphical user interface (GUI) has been designed to pro-
vide information about the internal state of the simulator dur-
ing the whole plan execution simulation and provides mech-
anisms to control the next step of the simulation. The GUI
is specifically designed to offer a smart-city orientation. It in-
cludes six distinguishable GUI parts:

1. Figure 6-section 1 shows the current simulation time

2. Problem objects (Figure 6-section 2): it displays the plan-
ning problem objects along with their types. This static
information will not change over the simulation process.

3. Current state (Figure 6-section 3): This graphical section
contains the PDDL description of the current state, which
can change after an action starts or ends, when a live event
arrives or when a user introduces a manual change (TILs).
Propositions and numeric fluents of the current state can
be separately consulted in two different tabs.

4. Figure 6-section 4 shows the problem goals. In later refine-
ments, we intend to show the goals that are expectedly to
be achieved with the plan under execution.

5. Figure 6-section 5 shows the dynamic list of plan actions,
their start time, the objects involved in the action execution
and the action duration. In addition, actions are shown
with a representative colour: actions currently in execution
are shadowed in yellow, past or already executed actions in
red, and future actions in white.

6. Representative map (Figure 6-section 6): The map depicts
with location icons the relevant places involved in the plan
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(places to visit, restaurant, hotel). These location icons
change their colour when the corresponding action is ex-
ecuted. The map also displays distances between locations.

7. Simulation control buttons (Figure 6-section 7): In the mid-
dle of the top menu, the interface displays four buttons to
run the simulator step by step (the step size is defined by
the user), continue with the simulation, stop the simulation
and reset the simulation.

4.4 Reformulating the planning problem

Figure 7 shows the steps of the reformulation procedure.

Step 1: Create the New Initial State. The initial state
will comprise the information known by the simulator at the
time of creating the new problem. This includes the infor-
mation of the current simulation state plus the information
about future TILs; that is currently known information about
some future events. Thereby, the occurrence time of the future
TILs must also be updated.

Step 1.1: Update propositions and fluents. This step
refers to the update of the current state. The propositions
and fluents after the failure are retrieved from the current
world state. However, this might not be an accurate state
since we do not have sensing actions that provide us with a
precise picture of the real world. This may be particularly
problematic when an owverall or an at end condition of an
action is violated and the action has at end effects. Let us
take as an example the action (move tourist caro_hotel
viveros_garden), with an at start effect (at start (nmot
(be tourist caro_hotel))), an at end effect (at end (be
tourist viveros_garden)), and an overall condition (over
all (active tourist)). Due to a failure that resulted from
a live event which violated the previously mentioned overall
condition, the tourist is neither in caro_hotel because the
at start effect were already executed, nor in viveros_garden
because the at end effects were not yet executed due to the
failure. For simplicity, and because of the lack of sensing ac-
tions in our current implementation, when a failure happens

due to an owverall or an at end condition violation, we will
calculate the new initial state by simply rolling back the at
start effects of the failing action (if any).

Step 1.2: Update the time of TILs. When the new
problem is reformulated, we invoke the OPTIC planner, which
resets the time of execution and generates a plan starting
from time equal to zero. Consequently, we need to update the
occurrence time of the TILs to the result of its original time
minus the failure time. Let us assume that a failure occurred
at time 100, and that we have the TIL planned at time 235 (at
235 (not (open la_paella))), meaning that the restaurant
la paella will close at 235. Therefore, in the new initial state
formulation, its time will be 135 (235 minus 100); and it will
be updated to (at 135 (not (open la_paella))).

Step 2: Update preferences. When a failure occurs, we
come across a situation where we can distinguish two types
of preferences or soft goals:

1. Goals that have already been achieved at the time of the
failure by the actions that have been successfully executed
before the failure. These preference goals along with their
penalties will not be included in the new reformulated prob-
lem.

2. Goals that have not been satisfied, and which can in turn

be divided into two sets:

(a) The problem goals that were not included in the original
plan;

(b) The problem goals included in the original plan that have
not been satisfied yet due to the failure.

e For the set of goals in (a), the penalties are kept intact
as they were originally defined in the problem file.

e For the set of goals in (b), we want to keep the plan sta-
bility metric [4] similar to the concept of minimal per-
turbation [11], which is why we increase the penalties
of these goals in the new reformulated problem. Par-
ticularly, we opt for assigning a relatively high prior-
ity to these pending goals (twice as much as the max-
imum penalty among all goals), in order to potentially
enforce these goals in the new plan. We have thus opted
for applying a stability strategy that gives more priority
to goals that were already included in the original plan
than goals that were not. Other strategies such as keep-
ing a higher level of stability with respect to the failed
prior plan can also be adopted. In the case of a tourism
domain, we think that maintaining the original agenda
of the tourist as far as possible is more advisable.

For example, let us consider that the preference
(preference v2 (sometime (visited tourist
central market))) is one of the soft goals in the
set (b); this preference indicates that sometime during
the execution of the plan the tourist wishes to visit
the central market. Assuming that the penalty of this
preference in the original problem file was 270, and that
the highest among all preferences was 300, the new
penalty for preference v2 will be 600.

Finally, two points are worth mentioning. First, we learn
the soft goals that the planner decided to pursue in the
original plan by simply executing the plan without any live
events. Second, the pending hard goals of the original prob-
lem are kept as hard goals in the new problem file.



Step 3: Generate the new PDDL files. The last step
of the reformulation process consists in generating the new
PDDL files. In principle, the domain file remains unchanged,
unless we wish to necessarily include some particular action in
the new plan. In this case, we would need to encode a dummy
effect that triggers the corresponding action. Otherwise, only
the problem file is generated taking into consideration the
modifications discussed in step 1 and step 2.

In future implementations of the simulator, we will test a
Constraint Programming approach [6] for reformulating the
planning problem, as in [15], and compare the performance
when relying on a scheduler rather than a planner.

5 CASES OF STUDY

The aim of this section is to show the behaviour of our
simulation system with a representative example. We have a
tourist who wishes to make a one-day tour in the city of Va-
lencia. Initially, the system retrieves a set of recommended
places according to the user profile (table 1, column 1) and
a set of restaurants. The list of recommended places is cal-
culated by a Recommender System through the user profile.
This list of places comes along with a recommendation value
(Table 1, column RV) according to the interest degree of the
user in the particular place. This value will be used by the
planning module to obtain a plan that fits the user’s likes.

The tour (plan) for the user calculated by the planner is
shown in the left snapshot of Figure 8. The visits included in
the plan are marked with a red location icon in the snapshot.
The tour starts from the origin location of the tourist, i.e.,
the hotel in which the user is staying at (green location icon),
and includes six visits to monuments (red icons) and one stop
at a restaurant (orange icon).

The simulator starts the plan execution simulation with
the information provided above. Let us assume that at time
1:55 pm, a live event is received, (at 235 (not (free_table
el _celler_del_tossal))), indicating that the restaurant cho-
sen by the planner, el celler del tossal, is completely full
and has no available table. At the time the live event ar-
rives, the tourist has already visited the first three monuments
(1. Viveros garden; 2. Serrano towers; 3. Quart towers), and
he is currently at the location of the restaurant el celler del
tossal. When the user learns the restaurant is fully booked, the
simulator detects a failure because the action (eat tourist
el celler_del_tossal) is not executable. Then, the simula-
tor reformulates a new planning problem in order to obtain a
plan that solves the failure:

1. Initial state: the current location of the tourist is the point
at which the previous plan failed; i.e., the restaurant el
celler del tossal. Since the new initial state is initialized to
time zero (tin; = 0), the simulator updates the time of the
TILs in the current state, namely, the opening and closing
time of places, the time slot for having lunch and the TIL
(at tqvailabie (not (active tourist))), where tqvailable
is set to the new time the tourist must get back to the hotel
from ¢;; = 0. Additionally, the fluent (total moving time
tourist) is updated with the total time the tourist has
spent in moves around the city.

2. Goals: the places that have already been visited (the first
three monuments) are removed from the goal list. The new

set of goals includes two lists: (a) the pending goals of the
failed plan; that is, have lunch (4. have lunch) and the
three remaining monuments that have not been yet visited
by the user (5. Lonja, 6. Central market, 7. Town Hall);
plus (b) the goals of the original problem goals that were
not included in the first plan.

Regarding penalties of the goals, the list of goals in (b)
are included in the new planning problem with their original
recommended values (see the non-bold values RV’ in column
2 of Table 1). As for the pending goals of (a), the penalty of
these goals is increased with respect to their penalty in the
first plan (see the bold values RV’ in column 2 of Table 1 for
the three pending monuments) accordingly to the stability
concept explained in section 4.4.

The simulator invokes OPTIC and obtains a new plan, dis-
played in the middle snapshot of Figure 8. A few things must
be noted in this new plan:

1. OPTIC suggests a new restaurant (orange icon labeled with
number 4) which is rather far away from the prior restau-
rant. The reason is that we have only included in the plan-
ning problem the 10-top restaurants in Valencia suggested
by Trip Advisor, and the closest one to the prior restaurant
is the one shown in the second map.

2. The places included in the new plan are marked with green

location icons as well as the paths between places. We can
observe that the new plan maintains the visit to Town Hall
(now represented with the green icon numbered as 5) and to
the Lonja (now indicated with the green icon with number
6). However, the visit to Central Market has been discarded
in this new plan. This is likely due to the longer distance
to the new restaurant.

The simulation continues. Let us assume that when the
tourist is visiting the Town Hall, a new live event announc-
ing the building closes before the scheduled closing time ((at
140 (not (open town_hall)))) is received, the current time
being equal to 140 . A new failure is detected in the middle of
the execution of (visit tourist town-hall) due to a viola-
tion of an owerall condition. As we explained in section 4.4,
the simulator applies a rollback process to obtain the current
state before the last visit action but preserving the simulation
time. Then, in the new reformulated problem, the user is lo-
cated at the Town Hall, he has not visited the Town Hall and
the live event causes the proposition (open town_hall) to be
removed from the initial state. Note that the goal (visited
tourist town_hall) will be included as a goal in the new
problem to maintain the plan stability but since the Town
Hall is no longer open for visits, the planner will not include
this goal in the new plan. The penalties of the goals for this
third problem are shown in column 3 of Table 1.

The third plan (right snapshot of Figure 8), shown in light
blue colour, retrieves the visit to the Central market that
was eliminated from the second plan. The new plan suggests
visiting La Lonja (5. la Lonja) and then the Central market
(6. Central market). Finally, the user returns to the hotel.

6 CONCLUSIONS AND FURTHER
WORK

We have presented a context-aware smart tourism simulator
that keeps track of the execution of a tourist agenda. The sim-
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The three simulated plans. Icons in PLAN1: (0) Caro hotel, (1)Viveros Garden, (2) Serrano towers, (3) Quart towers, (4) El

Celler del Tossal (RESTAURANT), (5)Lonja, (6) Central market, (7) Town hall. Icons in PLAN2: 1,2,3 are the same as PLAN1, (4) the
Pederniz (RESTAURANT), (5) Town hall, (6)Lonja. Icons in PLAN3: 1,2,3,4 are the same as PLAN2, (5) Lonja, (6) Central market

PLACES RV | RV’ | RV”
Cathedral 280 | 280 280
Central market 270 | 600 | 600
Lonja 290 | 600 | 600
Serrano towers 250 | — —
City of arts and sciences | 280 | 280 280
Oceanografic 300 | 300 300
Bioparc 210 | 210 210
Quart towers 200 | — —
Viveros garden 250 | — —
Town hall 200 | 600 | 600
Table 1. Recommended places

ulator periodically updates its internal state with real-world
information and receives sensible environmental changes in
the form of live events. Events are processed in the context
of the plan and in case of failure, a new planning problem is
formulated. This involves creating the new initial state and
updating the time of timed events. In the case of study, we
have shown how the user can track the plan execution through
a GUI that automatically displays the plan under execution.

As for future work, we intend to endow the system with
a pro-active behaviour, analyzing the incoming of live events
that entail a future failure in the plan.
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